loj#6495「雅礼集训 2018 Day1」树 dp

123 篇文章 0 订阅

Description


定义生成一棵树的方式:对于节点i从[1,i-1]随机一个父亲。求这棵树的期望高度
n ≤ 24 n\le24 n24

Solution


设f[i,j]表示i个节点高度为j的方案数。注意到2的父亲一定是1,我们可以枚举2为根的子树的情况,然后讨论一下能否成为最大值就行了
转移看代码。。

Code


#include <stdio.h>
#include <string.h>
#include <algorithm>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)

typedef long long LL;
const int N=205;
const int r[]={0,1,2,3,3,3,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6};

LL f[N][N],C[N][N]; int MOD;

int read() {
	int x=0,v=1; char ch=getchar();
	for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):v,ch=getchar());
	for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
	return x*v;
}

LL ksm(LL x,LL dep) {
	LL res=1; for (;dep;dep>>=1,x=x*x%MOD) {
		(dep&1)?(res=res*x%MOD):0;
	} return res;
}

void upd(LL &x,LL v) {
	x+=v,(x>=MOD)?(x-=MOD):0;
}

int main(void) {
	int n=read(); MOD=read();
	printf("%d\n", r[n]);
	C[0][0]=1;
	rep(i,1,n) {
		C[i][0]=C[i][i]=1;
		rep(j,1,i-1) upd(C[i][j],C[i-1][j]),upd(C[i][j],C[i-1][j-1]);
	}
	f[1][1]=1;
	rep(i,2,n) rep(j,2,i) {
		rep(x,1,i-1) {
			LL tmp=0;
			rep(y,1,j-2) upd(tmp,f[x][y]*f[i-x][j]%MOD);
			rep(y,1,j) upd(tmp,f[x][j-1]*f[i-x][y]%MOD);
			upd(f[i][j],tmp*C[i-2][x-1]%MOD);
		}
	}
	LL ans=0;
	rep(i,1,n) upd(ans,f[n][i]*i%MOD);
	rep(i,1,n-1) ans=ans*ksm(i,MOD-2)%MOD;
	printf("%lld\n", ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值