Description
给一个长度为n的字符串,m次询问(l,r)求l到r内本质不同的回文子串数量
Solution
老年选手复习回文树。。
考虑暴力怎么写。我们离线询问按照r排序,每次在回文树上暴力跳fail统计以r为结尾的新增回文串。注意到每一个回文串影响的左端点是一个区间,那么我们用树状数组区间加就可以了。这样做是O(n^2logn)的
有一个小结论就是,所有以r为结尾的回文串的长度一定可以分成logn段等差数列。那么我们每次跳一整段等差数列一起修改,然后就没了
Code
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
#define rep(i,st,ed) for (int i=st;i<=ed;++i)
#define drp(i,st,ed) for (int i=st;i<=ed;++i)
#define lb(x) (x&-x)
#define fi first
#define se second
typedef long long LL;
typedef std:: pair <int,int> pair;
const int MOD=1e9+7;
const int N=1000005;
char str[N];
struct PAM {
int rec[N][27],fa[N],len[N],d[N],up[N],tot,last;
int pos[N],size[N];
std:: vector <int> G[N];
PAM() {fa[0]=1; len[1]=-1; tot=1;}
void extend(int ch,int n) {
int p=last;
while (str[n-len[p]-1]!=str[n]) p=fa[p];
if (!rec[p][ch]) {
tot++; len[tot]=len[p]+2;
int k=fa[p];
while (str[n]!=str[n-len[k]-1]) k=fa[k];
fa[tot]=rec[k][ch]; rec[p][ch]=tot;
d[tot]=len[tot]-len[fa[tot]];
up[tot]=(d[fa[tot]]==d[tot]?up[fa[tot]]:tot);
}
last=rec[p][ch];
}
void build() {
rep(i,0,tot) if (i!=1) G[fa[i]].push_back(i);
}
void dfs(int x) {
pos[x]=++pos[0],size[x]=1;
for (int i=0;i<G[x].size();++i) {
int y=G[x][i];
dfs(y),size[x]+=size[y];
}
}
} Pam;
std:: vector <pair> Q[N];
LL s[N],rec[N],max[N<<2];
int n;
void add(int x,int v) {
for (;x<=n;x+=lb(x)) s[x]+=v;
}
LL get(int x) {
LL res=0;
for (;x;x-=lb(x)) res+=s[x];
return res;
}
int query(int now,int tl,int tr,int l,int r) {
if (tl>=l&&tr<=r) return max[now];
int mid=(tl+tr)>>1,qx=0,qy=0;
if (l<=mid) qx=query(now<<1,tl,mid,l,r);
if (mid+1<=r) qy=query(now<<1|1,mid+1,tr,l,r);
return std:: max(qx,qy);
}
void modify(int now,int tl,int tr,int x,int v) {
if (tl==tr) return (void) (max[now]=v);
int mid=(tl+tr)>>1;
if (x<=mid) modify(now<<1,tl,mid,x,v);
else modify(now<<1|1,mid+1,tr,x,v);
max[now]=std:: max(max[now<<1],max[now<<1|1]);
}
int main(void) {
int m; scanf("%d%d%s",&n,&m,str+1);
str[0]=255;
rep(i,1,n) {
Pam.extend(str[i]-'a'+1,i);
}
Pam.build(); Pam.dfs(1);
rep(i,1,m) {
int l,r; scanf("%d%d",&l,&r);
Q[r].push_back(pair(l,i));
}
int now=1;
rep(i,1,n) {
while (str[i]!=str[i-Pam.len[now]-1]) now=Pam.fa[now];
now=Pam.rec[now][str[i]-'a'+1];
for (int x=now;x;x=Pam.fa[Pam.up[x]]) {
int l=std:: max(1,query(1,1,Pam.pos[0],Pam.pos[x],Pam.pos[x]+Pam.size[x]-1)-Pam.len[x]+2);
int r=i-Pam.len[Pam.up[x]]+2;
add(l,1),add(r,-1);
}
modify(1,1,Pam.pos[0],Pam.pos[now],i);
for (int j=0;j<Q[i].size();++j) {
rec[Q[i][j].se]=get(Q[i][j].fi);
}
}
LL ans=0;
rep(i,1,m) ans=(ans+rec[i]*i%MOD)%MOD;
printf("%lld\n", ans);
return 0;
}