南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的。
小工是南将军手下的军师,南将军现在想知道第m号到第n号士兵的总杀敌数,请你帮助小工来回答南将军吧。
注意,南将军可能会问很多次问题。
-
输入
-
只有一组测试数据
第一行是两个整数N,M,其中N表示士兵的个数(1<N<1000000),M表示南将军询问的次数(1<M<100000)
随后的一行是N个整数,ai表示第i号士兵杀敌数目。(0<=ai<=100)
随后的M行每行有两个整数m,n,表示南将军想知道第m号到第n号士兵的总杀敌数(1<=m,n<=N)。
输出
-
对于每一个询问,输出总杀敌数
每个输出占一行
样例输入
-
5 2 1 2 3 4 5 1 3 2 4
样例输出
-
6
9
-
-
方法一:
-
#include<cstdio>
long long sum[1000005];
int a[1000005];
int read(){
int x(0),f(1);
char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int main()
{
long long N,M,n,m,i;
scanf("%lld%lld",&N,&M);
for( i=1; i<=N; i++)
scanf("%d",&a[i]);
sum[0]=0;
for( i=1; i<=N; i++)
sum[i]=sum[i-1]+a[i];
for( i=1; i<=M; i++)
{
scanf("%lld%lld",&m,&n);
printf("%lld\n",sum[n]-sum[m-1]);
}
return 0;
}
-
-
方法二(线段树模板):
-
#include<cstdio>
#include<algorithm>
using namespace std;
#define L o<<1
#define R (o<<1)|1
struct Node
{
int l,r,sum,Max,Min;
}Tree[2<<20];
void PushUp(int o)
{
Tree[o].sum = Tree[o*2].sum + Tree[o*2+1].sum;
// Tree[o].Max = max(Tree[o*2].Max,Tree[o*2+1].Max);
// Tree[o].Min = min(Tree[o*2].Min,Tree[o*2+1].Min);
}
void Build(int o,int l,int r)
{
//首先记录l和r的值
Tree[o].l = l;
Tree[o].r = r;
if (l == r) //到达最底层,递归终止
{
int t;
scanf ("%d",&t); //输入数据
Tree[o].sum = Tree[o].Max = Tree[o].Min = t; //更新节点数据
return;
}
int mid = (l+r) >> 1; //找到中间节点
Build(o*2 , l , mid); //递归建左子树
Build(o*2+1 , mid+1 , r); //递归建右子树
PushUp(o); //更新当前节点的值
}
void UpDate(int o,int l,int r,int x,int y) //把x节点更新为y
{
if (l == r) //递归结束
{
Tree[o].Max = Tree[o].Min = Tree[o].sum = y; //精确找到了节点,更新
return;
}
int mid = (l+r) / 2; //找到中间位置
if (x <= mid)
UpDate(o*2,l,mid,x,y); //找左子树
else
UpDate(o*2+1,mid+1,r,x,y); //找右子树
PushUp(o); //更新当前节点
}
int QuerySum(int o,int l,int r,int x,int y) //查找x到y的和
{
if (l == x && r == y) //如果恰好是当前节点,就返回
{
return Tree[o].sum;
}
int mid = (l + r) / 2;
if (mid >= y) //全在左边
return QuerySum(o*2,l,mid,x,y);
else if (x > mid) //全在右边
return QuerySum(o*2+1,mid+1,r,x,y);
else //一半在左一半在右
return QuerySum(o*2,l,mid,x,mid) + QuerySum(o*2+1,mid+1,r,mid+1,y);
}
int main()
{
int N,M,m,n;
while(~scanf ("%d%d",&N,&M))
{
Build(1,1,N);
for(int i=1; i<=M; i++)
{
scanf("%d%d",&m,&n);
// UpDate(1,1,n,2,7);
printf ("%d\n",QuerySum(1,1,N,m,n));
}
}
return 0;
}