torch.tensor()与torch.Tensor()的区别

文章讲述了PyTorch中torch.tensor()和torch.Tensor()创建张量的差异:torch.tensor()通常复制数据,防止修改;torch.Tensor()直接使用数据,数据可变时会影响张量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在 PyTorch 中,torch.tensor() 和 torch.Tensor() 都用于创建张量(Tensor),但是它们有一些细微的区别。

1.torch.tensor():

torch.tensor() 是一个函数,用于根据给定的数据创建新的张量。
它接受一个数据(如 Python 列表、NumPy 数组等)作为输入,并返回一个新的张量对象。
torch.tensor() 函数默认会将输入数据进行拷贝,即创建新的数据副本。这意味着如果输入数据是可变的(例如 Python 列表),修改原始数据不会影响新创建的张量。
例子:

x = torch.tensor([1, 2, 3])

2.torch.Tensor():
torch.Tensor() 是一个构造函数&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值