我们只需几句话,就能让大型语言模型在短时间内生成长篇大论。然而,虽然这些AI生成的文章乍一看令人惊艳,但仔细阅读后,总会觉得略显别扭,明显带有浓重的“AI味”。
那么,是否有方法能够量化文章中为何会出现这种“AI味”呢?
1. 让AI告诉我们他们写的文章会有些什么明显的特点## 角色定位
- **身份**:专业文本生成分析助手
- **核心能力**:跨领域知识整合/特征归纳/结构化输出
- **知识储备**:涵盖GPT系列、扩散模型等主流生成技术原理及应用场景
给出AI生成文章的特征点
这段内容的主要在于分析不同AI平台生成内容的差异,以及总结AI生成内容的常见特征。具体内容包括:
-
平台表现差异
- Kimi通常效果更佳,因为它会触发联网搜索后进行总结,提供更全面的答案。
- DeepSeek则经常跳过联网,直接凭思考给出回答,可能内容相对简单或不够全面。
-
AI内容的模板化和结构特点
- 常用总分总、三段式或分点论述的框架。
- 段落之间使用机械重复的渡词,如“首先”、“其次”、“最后”等连接词。
- 上下文衔接较弱,逻辑跳跃明显,逻辑连贯性较差。
-
语法特征
- 喜欢使用长句,句子结构较复杂。
- 高频词汇使用率高,词汇重复较多。
- 常用自创或新颖短语。
- 大量堆砌形容词,修饰词丰富,语气夸张。
-
内容特征
- 生成内容显示出模板化、结构化的倾向,缺乏深度的逻辑衔接,语言风格偏向机械化、公式化。
综上,AI生成的内容具有明显的模板化、重复性强、逻辑不足和修辞堆砌等特点。
-
跨领域信息整合度过高,也就是很多不搭边的领域硬要凑在一起写
-
会出现事实描述错误,违反现实规律的语句
-
大量使用隐喻词汇,用生僻的词汇含义表达常见的形象
-
话题转换频繁,视觉转换频繁
2. 让AI根据这些特征帮我审核文章给出结果
汇总不同平台给出的答案我整理出下面这个prompt(提示词):
# 作为文本AI特征分析专家,请按照以下维度整体分析文本,对AI生成特征进行检测:
1. 大量使用重复句式,重复的修辞手法
2. 高频采用总分总/三段式/分点论述结构
3. 段落间存在重复的机械化渡词("首先/其次/最后"等连接词重复率高)
4. 句子结构离散度过高,上下文衔接处呈现"弱关联跳转"特征,缺乏连贯性。
5. 句子长度量化指标过高,平均句长波动较低
6. 自创词语出现率较高,语境适配度低
7. 跨领域信息整合度过高
8. 词句隐喻密度过高
9. 方位状语前置句式的机械感
10. 情感逻辑矛盾,不同意向之间描写缺乏过渡
11. 话题转换频繁,视觉焦点跳跃异常
12. 意向堆砌,无意义的修饰词过度堆叠
13. 文字信息密度过高
14. 非常规物理现象描写
15. 被动句占比过高
16. 情感词汇密度过高
17. 生理感受描述词密度异常
18. 过度精致的细节,缺乏情感深度
19. 缺乏情感起伏
## 输出要求:
1. 给出表格格式的量化指标
2. 提供修改建议
3. 无需给出修改后的文本
4. 最后给出总结和AI生成总概率判断
3. 实战,试下不同AI平台的效果
首先下面这段文字是典型的deepseek生成的文本,一眼看出形容词堆砌的现象。
天幕被墨汁泼翻,云山倾轧而来。檐角铁皮开始震颤,千万支银箭穿透闷热的帷幕,芭蕉叶在鞭打下翻出青白的肚皮。柏油路浮起珍珠泡,下水道吞吐不及的呜咽混着雷声,在楼宇之间来回碰撞。一道紫电劈开混沌,积雨云里泄下银河,顷刻间世界只剩白茫茫的轰鸣。直到东天裂开微光,湿漉漉的蝉鸣从水洼里挣扎着浮起。
一、DeepSeek R1 检测结果
DeepSeek典型的风格就是数据化,准不准确不知道,就是一眼给人一种好像精确仪器测试出来的报告一样,带点科幻感……
二、Kimi K1.5 检测结果
忍不住吐槽一下:Kimi 生成的结果表格竟然显示不完整,还需要我自己F12调整页面元素宽度才能截图……
三、混元深度思考T1
指标量化方面,各个模型都差不多:
-
Deepseek 指标更精确
-
感觉Kimi更人性化一点
-
这次混元模型有点独特,别人都是70%以上,他只有38%……
而这些模型给出的修改建议,也就是参考一下就好了,意义不大,甚至有些词语越改越别扭……
这只是一次简单的尝试,实际使用过程中,我发现需要调节下不同特征点而在评价中的比例,比如信息密度过高这一块,是最直观的,也是最重要的检测要点。
犹记得第一次用AI画图的震撼,也记得第一次用DeepSeek生成诗句的惊艳……
似乎AI能做的东西越来越多,越来越接近人类,甚至超越。
但是,你也会发现,可能30s就可以让AI帮你生成了一篇文章,但是你需要花费好几个小时来改这篇文章,最后你可能会发现还不如自己写点大白话看起来舒服……