剑指Offer 10 - I. 斐波那契数列
一、题目详情
写一个函数,输入 n
,求斐波那契(Fibonacci)数列的第 n
项(即 F(N)
)。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:1
示例 2:
输入:n = 5
输出:5
提示:
0 <= n <= 100
二、递归法
对于本题,首先可以想到递归法。但递归法重复计算过多导致时间复杂度过高。
class Solution {
public int fib(int n) {
if(n == 0){
return 0;
}
if(n == 1){
return 1;
}
return (fib(n - 1) + fib(n - 2)) % 1000000007;
}
}
三、动态规划法
本题可以使用动态规划法解决。
状态转移方程为:
f
(
n
)
=
f
(
n
−
1
)
+
f
(
n
−
2
)
f(n)=f(n - 1) + f(n - 2)
f(n)=f(n−1)+f(n−2)
因为存在越界的大数,所以在每次运算后都要对结果取余。
class Solution {
public int fib(int n) {
if(n == 0){
return 0;
}
if(n == 1){
return 1;
}
int[] dp = new int[n + 1];
dp[1] = 1;
for(int i = 2;i <= n;i++){
dp[i] = (dp[i - 1] + dp[i - 2]) % 1000000007;
}
return dp[n];
}
}