编程题目:
66.大厅里有100盏灯,每盏灯都编了编号,分别为1-100,每盏灯由一个开关控制。开关按一下灯亮,再按一下灯灭,开关的编号与灯编号一致。开始时灯是全灭的,现在按照以下规则按动开关:
第一次,将所有的灯点亮;
第二次,将所有2的倍数的开关按一下;
第三次,将所有3的倍数的开关按一下;
以此类推,第N次,将所有的N的倍数的开关按一下。
问第N次(N大于等于2,且小于等于100)按完以后,大厅里还有几盏灯是亮的。
示例代码:
package program.calculation.exercise66;
import java.util.Arrays;
/**
* 66.大厅里有100盏灯,每盏灯都编了编号,分别为1-100,每盏灯由一个开关控制。开关按一下灯亮,再按一下灯灭,开关的编号与灯编号一致。开始时
* 灯是全灭的,现在按照以下规则按动开关:
* 第一次,将所有的灯点亮;
* 第二次,将所有2的倍数的开关按一下;
* 第三次,将所有3的倍数的开关按一下;
* 以此类推,第N次,将所有的N的倍数的开关按一下。
* 问第N次(N大于等于2,且小于等于100)按完以后,大厅里还有几盏灯是亮的。
*/
/**
* 第一种方法:暴力解法
* 分析如下:
* 暴力解法一般是思路上最接近题意的,按题目要求的步骤直接求解,暴力求解一般计算量也是最大的。
*
* 第二种方法:优化解法,转化为求[1-100]100个数中,约数个数为奇数的数,即完全平方数。
* 分析如下:
* 1.对于每盏灯,拉动的次数是奇数时,灯就是亮着的,拉动的次数是偶数时,灯就是关着的。
* 2.每盏灯拉动的次数与它的编号所含约数的个数有关,它的编号有几个约数,这盏灯就被拉动几次。
* 3.1-100这100个数中有哪几个数,约数的个数是奇数。我们知道一个数的约数都是成对出现的,只有完全平方数约数的个数才是奇数个。
* 所以这100盏灯中有10盏灯是亮着的,它们的编号分别是: 1、4、9、16、25、36、49、64、81、100。
*
*/
public class LightSwitch {
public static void main(String[] args) {
System.out.println("第一种方法(暴力解法):");
coun