我的Opencv

1.安装Opencv

pip install opencv-python

2.读取图像

 

3.写图像

4. 显示图像

5.waitKey() 

6.读视频并播放视频

7.写视频

8. 获取摄像头视频

 9.色彩转换

# BGR to GRAY
imgGRAY = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# BGR to RGB
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# BGR to HSV
imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# BGR to YCrCb (also known as YCC)
imgYCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)

10.图像变换

cv2.resize()

函数名称:
cv2.resize

函数参数讲解:

  • src: 输入图像。
  • dsize: 输出图像的大小。可以是 (width, height) 的元组形式。如果设置为 (0, 0),则必须提供 fx 和 fy
  • fx: 沿着 x 轴(水平方向)的缩放因子。当 dsize 设置为 (0, 0) 时有效。
  • fy: 沿着 y 轴(垂直方向)的缩放因子。当 dsize 设置为 (0, 0) 时有效。
  • interpolation: 插值方法。常用的有 cv2.INTER_AREA(用于缩小)、cv2.INTER_CUBIC(用于放大,较慢但效果好)、cv2.INTER_LINEAR(默认,适用于所有情况)。

示例代码:

import cv2

# 加载图像
img = cv2.imread('image.jpg')

# 缩放到指定大小
resized_img = cv2.resize(img, (800, 600), interpolation=cv2.INTER_LINEAR)

# 按比例缩放
scaled_img = cv2.resize(img, (0, 0), fx=0.5, fy=0.5, interpolation=cv2.INTER_LINEAR)

cv2.flip()

函数名称:
cv2.flip

函数参数讲解:

  • src: 输入图像。
  • flipCode: 翻转方向标志。0 表示沿 x 轴翻转(上下翻转),1 表示沿 y 轴翻转(左右翻转),-1 表示沿 x 轴和 y 轴同时翻转(对角线翻转)。

示例代码:

import cv2

# 加载图像
img = cv2.imread('image.jpg')

# 上下翻转
flipped_img_vertical = cv2.flip(img, 0)

# 左右翻转
flipped_img_horizontal = cv2.flip(img, 1)

# 对角线翻转
flipped_img_both = cv2.flip(img, -1)

cv2.warpAffine 平移、缩放、旋转

函数名称:
cv2.warpAffine

函数参数讲解:

  • src: 输入图像。
  • M: 2x3 变换矩阵。
  • dsize: 输出图像的大小 (width, height)
  • flags: 插值方法,默认为 cv2.INTER_LINEAR
  • borderMode: 边界填充方式,默认为 cv2.BORDER_CONSTANT
  • borderValue: 如果边界模式是 cv2.BORDER_CONSTANT,则使用的边界颜色,默认为黑色。

示例代码:

平移变换:

import cv2
import numpy as np

# 加载图像
img = cv2.imread('image.jpg')

# 定义平移矩阵
tx, ty = 100, 50  # x轴和y轴上的平移量
M_translation = np.float32([[1, 0, tx], [0, 1, ty]])

# 应用平移
translated_img = cv2.warpAffine(img, M_translation, (img.shape[1], img.shape[0]))

 缩放变换:

# 定义缩放矩阵
fx, fy = 0.5, 0.5  # 缩放比例
M_scaling = np.float32([[fx, 0, 0], [0, fy, 0]])

# 应用缩放
scaled_img = cv2.warpAffine(img, M_scaling, (int(w * fx), int(h * fy)))

旋转变换:

# 获取图像中心点
(h, w) = img.shape[:2]
center = (w // 2, h // 2)

# 定义旋转矩阵
angle = 45  # 旋转角度
scale = 1.0  # 缩放比例
M_rotation = cv2.getRotationMatrix2D(center, angle, scale)

# 应用旋转
rotated_img = cv2.warpAffine(img, M_rotation, (w, h))

三点仿射变换

函数名称:
cv2.getAffineTransform

函数参数讲解:

  • pts1: 输入图像中的三个点坐标。
  • pts2: 输出图像中对应的三个点坐标。

示例代码:

import cv2
import numpy as np

# 加载图像
img = cv2.imread('image.jpg')

# 定义输入和输出图像中的三个点
pts1 = np.float32([[50, 50], [200, 50], [50, 200]])
pts2 = np.float32([[10, 100], [200, 50], [100, 250]])

# 计算仿射变换矩阵
M_affine = cv2.getAffineTransform(pts1, pts2)

# 应用仿射变换
affine_transformed_img = cv2.warpAffine(img, M_affine, (img.shape[1], img.shape[0]))

透视变换

函数名称:
cv2.getPerspectiveTransform

函数参数讲解:

  • src: 输入图像中的四个点坐标。
  • dst: 输出图像中对应的四个点坐标。

示例代码:

import cv2
import numpy as np

# 加载图像
img = cv2.imread('image.jpg')

# 定义输入和输出图像中的四个点
pts_src = np.float32([[56, 65], [368, 52], [28, 387], [389, 390]])
pts_dst = np.float32([[0, 0], [300, 0], [0, 300], [300, 300]])

# 计算透视变换矩阵
M_perspective = cv2.getPerspectiveTransform(pts_src, pts_dst)

# 应用透视变换
perspective_transformed_img = cv2.warpPerspective(img, M_perspective, (300, 300))

11.图像平滑滤波

cv2.blur()

函数名称:
cv2.blur

操作介绍:
均值滤波(Mean Filtering)是一种简单的线性滤波器,它通过计算图像中每个像素邻域的平均值来平滑图像。这种滤波方法有助于减少图像中的高斯噪声,但可能会导致边缘模糊。均值滤波总是进行归一化处理,即每个像素的贡献是相等的。

函数参数介绍:

  • src: 输入图像。
  • ksize: 均值滤波器的尺寸 (width, height)。通常是一个奇数的正方形,例如 (3, 3) 或 (5, 5)
  • anchor: 锚点,默认是中心点 (-1, -1),表示内核的中心作为锚点。可以指定其他位置来改变滤波器的行为。
  • borderType: 边界填充方式,如 cv2.BORDER_DEFAULT

代码示例:

import cv2

# 加载图像
img = cv2.imread('image.jpg')

# 应用均值滤波
mean_filtered_img = cv2.blur(img, (5, 5))

# 显示结果
cv2.imshow('Mean Filtered Image', mean_filtered_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.boxFilter()

函数名称:
cv2.boxFilter

操作介绍:
方框滤波(Box Filter)也是一种简单的线性滤波器,它通过计算图像中每个像素邻域的平均值来平滑图像。与均值滤波不同的是,方框滤波允许在计算平均值时考虑边界外的像素,这可以通过设置参数来控制。方框滤波对于减少噪声和模糊化图像非常有用。

函数参数介绍:

  • src: 输入图像。
  • ddepth: 输出图像的深度。如果为 -1,则输出图像将具有与输入图像相同的深度。
  • ksize: 方框滤波器的尺寸 (width, height)。通常是一个奇数的正方形,例如 (3, 3) 或 (5, 5)
  • normalize: 如果为 True,则滤波器会进行归一化,即除以核大小的面积;如果为 False,则不会进行归一化,这相当于对每个像素应用了一个常量加权。
  • anchor: 锚点,默认是中心点 (-1, -1),表示内核的中心作为锚点。可以指定其他位置来改变滤波器的行为。
  • borderType: 边界填充方式,如 cv2.BORDER_DEFAULT

代码示例:

import cv2

# 加载图像
img = cv2.imread('image.jpg')

# 应用方框滤波
box_filtered_img = cv2.boxFilter(img, -1, (5, 5), normalize=True)

# 显示结果
cv2.imshow('Box Filtered Image', box_filtered_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.GaussianBlur()

函数名称:
cv2.GaussianBlur

操作介绍:
高斯滤波(Gaussian Filtering)是一种非均匀的线性滤波器,它使用高斯分布作为权重对邻域内的像素进行加权平均。高斯滤波在去除高斯噪声方面效果很好,同时尽量保留图像的边缘信息。高斯滤波器的权重取决于距离中心像素的距离,离得越近的像素权重越大,离得远的像素权重越小。

函数参数介绍:

  • src: 输入图像。
  • ksize: 高斯滤波器的尺寸 (width, height)。通常是一个奇数的正方形,例如 (3, 3) 或 (5, 5)。如果设置为 (0, 0),则根据 sigmaX 自动确定。
  • sigmaX: 沿 X 轴方向的标准差。如果设置为 0,则从 ksize 计算得出。
  • sigmaY: 沿 Y 轴方向的标准差。如果设置为 0,则等于 sigmaX
  • borderType: 边界填充方式,如 cv2.BORDER_DEFAULT

代码示例:

import cv2

# 加载图像
img = cv2.imread('image.jpg')

# 应用高斯滤波
gaussian_blurred_img = cv2.GaussianBlur(img, (5, 5), 0)

# 显示结果
cv2.imshow('Gaussian Blurred Image', gaussian_blurred_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.medianBlur()

函数名称:
cv2.medianBlur

操作介绍:
中值滤波(Median Filtering)是一种非线性滤波器,它通过替换每个像素值为其邻域内的中值来平滑图像。中值滤波对于去除椒盐噪声特别有效,因为它能够很好地保护图像的边缘和细节,而不会像均值或高斯滤波那样导致边缘模糊。

函数参数介绍:

  • src: 输入图像。
  • ksize: 中值滤波器的尺寸,必须是大于1的奇数,如 35 等。

代码示例:

import cv2

# 加载图像
img = cv2.imread('image.jpg')

# 应用中值滤波
median_filtered_img = cv2.medianBlur(img, 5)

# 显示结果
cv2.imshow('Median Filtered Image', median_filtered_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.bilateralFilter()

函数名称:
cv2.bilateralFilter

操作介绍:
双边滤波(Bilateral Filtering)是一种高级的非线性滤波器,它不仅考虑了空间邻近度(即像素之间的距离),还考虑了像素强度差异(即颜色或灰度值)。因此,双边滤波能够在保持边缘的同时有效地减少噪声。它适用于需要保持图像特征的场景,如图像增强、卡通效果生成等。

函数参数介绍:

  • src: 输入图像。
  • d: 每个像素领域直径,如果为非正值,则从 sigmaSpace 计算。
  • sigmaColor: 颜色空间的标准差,较大的值意味着更远的颜色也会被混合到一起,产生更大的半相等颜色区域。
  • sigmaSpace: 坐标空间的标准差(以像素为单位),较大的值意味着更远的像素也会被混合到一起,只要它们的颜色足够接近。如果 d > 0,它指定了邻域大小且不需要使用 sigmaSpace

代码示例:

import cv2

# 加载图像
img = cv2.imread('image.jpg')

# 应用双边滤波
bilateral_filtered_img = cv2.bilateralFilter(img, 9, 75, 75)

# 显示结果
cv2.imshow('Bilateral Filtered Image', bilateral_filtered_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.filter2D()

函数名称:
cv2.filter2D

操作介绍:
2D卷积滤波(2D Convolution Filtering)是一种通用的滤波方法,它允许用户定义自定义的卷积核(kernel)来对图像进行滤波。卷积核可以是任何大小的矩阵,并且可以根据特定的应用需求设计。2D卷积滤波广泛应用于各种图像处理任务,如边缘检测、锐化、模糊等。

函数参数介绍:

  • src: 输入图像。
  • ddepth: 输出图像的深度。如果为 -1,则输出图像将具有与输入图像相同的深度。
  • kernel: 卷积核(滤波器),一个二维数组。
  • anchor: 锚点,默认是中心点 (-1, -1),表示内核的中心作为锚点。可以指定其他位置来改变滤波器的行为。
  • delta: 可选偏移量,添加到滤波后的图像上,默认为 0
  • borderType: 边界填充方式,如 cv2.BORDER_DEFAULT

代码示例:

import cv2
import numpy as np

# 加载图像
img = cv2.imread('image.jpg')

# 定义自定义卷积核
kernel = np.ones((5, 5), np.float32) / 25

# 应用2D卷积滤波
convoluted_img = cv2.filter2D(img, -1, kernel)

# 显示结果
cv2.imshow('2D Convolved Image', convoluted_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

12.阈值处理

cv2.threshold()

函数名称:
cv2.threshold

操作介绍:
全局阈值处理是一种将图像转换为二值图像的简单方法,它根据一个全局阈值来决定每个像素是属于前景(白色)还是背景(黑色)。OpenCV提供了多种全局阈值处理的方法,包括二值化、反二值化、截断、超阈值和低阈值处理。这些方法适用于不同的应用场景,如文档扫描、字符识别等。

函数参数介绍:

  • src: 输入图像,通常是一个灰度图像。
  • thresh: 阈值,用于比较图像中的像素值。
  • maxval: 当像素值超过(或在某些情况下低于)阈值时应用的最大值。
  • type: 阈值处理类型,可以是以下之一:
    • cv2.THRESH_BINARY: 二值化阈值处理,如果像素值大于阈值,则设为 maxval,否则设为 0
    • cv2.THRESH_BINARY_INV: 反二值化阈值处理,如果像素值大于阈值,则设为 0,否则设为 maxval
    • cv2.THRESH_TRUNC: 截断阈值处理,如果像素值大于阈值,则设为阈值,否则保持不变。
    • cv2.THRESH_TOZERO: 超阈值处理,如果像素值大于阈值,则设为 0,否则保持不变。
    • cv2.THRESH_TOZERO_INV: 低阈值处理,如果像素值小于阈值,则设为 0,否则保持不变。

代码示例:

import cv2

# 加载图像并转换为灰度
img = cv2.imread('image.jpg', 0)

# 二值化阈值处理
ret, binary_img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)

# 反二值化阈值处理
ret, binary_inv_img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)

# 截断阈值处理
ret, trunc_img = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC)

# 超阈值处理
ret, tozero_img = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)

# 低阈值处理
ret, tozero_inv_img = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)

# 显示结果
cv2.imshow('Binary Image', binary_img)
cv2.imshow('Binary Inv Image', binary_inv_img)
cv2.imshow('Trunc Image', trunc_img)
cv2.imshow('ToZero Image', tozero_img)
cv2.imshow('ToZero Inv Image', tozero_inv_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.adaptiveThreshold()

函数名称:
cv2.adaptiveThreshold

操作介绍:
自适应阈值处理是一种改进的全局阈值处理方法,它不是使用一个固定的全局阈值,而是根据图像的不同区域动态地调整阈值。这对于光照不均匀或复杂背景的图像非常有用。自适应阈值处理有两种常用的方法:均值法和高斯加权法。

函数参数介绍:

  • src: 输入图像,通常是一个灰度图像。
  • maxValue: 当像素值超过(或在某些情况下低于)计算出的阈值时应用的最大值。
  • adaptiveMethod: 自适应阈值计算方法,可以是以下之一:
    • cv2.ADAPTIVE_THRESH_MEAN_C: 使用邻域内像素的平均值作为阈值。
    • cv2.ADAPTIVE_THRESH_GAUSSIAN_C: 使用邻域内像素的加权和(高斯窗口)作为阈值。
  • thresholdType: 阈值处理类型,通常是 cv2.THRESH_BINARY 或 cv2.THRESH_BINARY_INV
  • blockSize: 邻域大小(奇数),用于计算阈值。
  • C: 从计算出的平均值或加权和中减去的常数。

代码示例:

import cv2

# 加载图像并转换为灰度
img = cv2.imread('image.jpg', 0)

# 自适应阈值处理(均值法)
adaptive_mean_img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)

# 自适应阈值处理(高斯加权法)
adaptive_gaussian_img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

# 显示结果
cv2.imshow('Adaptive Mean Image', adaptive_mean_img)
cv2.imshow('Adaptive Gaussian Image', adaptive_gaussian_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

迭代阈值处理(Otsu's Binarization)

函数名称:
cv2.threshold with cv2.THRESH_OTSU

操作介绍:
迭代阈值处理,特别是大津法(Otsu's Method),是一种自动确定最佳阈值的方法。它通过最大化类间方差来找到最佳的二值化阈值,特别适合于双峰直方图的图像。大津法可以在 cv2.threshold 函数中通过添加 cv2.THRESH_OTSU 标志来实现。

函数参数介绍:

  • src: 输入图像,通常是一个灰度图像。
  • thresh: 初始阈值,当使用 cv2.THRESH_OTSU 时,这个值会被忽略。
  • maxval: 当像素值超过(或在某些情况下低于)阈值时应用的最大值。
  • type: 阈值处理类型,通常是 cv2.THRESH_BINARY 或 cv2.THRESH_BINARY_INV,并且需要加上 cv2.THRESH_OTSU

代码示例:

13.图像边缘检测 

cv2.Sobel()

函数名称:
cv2.Sobel

操作介绍:
Sobel边缘检测是一种基于一阶导数的梯度算子,用于计算图像中每个像素点的水平和垂直方向上的梯度。Sobel算子通过一个3x3的卷积核来检测图像中的边缘。它对噪声有一定的抑制作用,并且能够突出图像中的高梯度区域,即边缘。Sobel算子可以分别计算X轴和Y轴方向的梯度,也可以同时计算两个方向的梯度。

函数参数介绍:

  • src: 输入图像,通常是灰度图像。
  • ddepth: 输出图像的深度,通常为 -1 表示与输入图像相同深度,或使用 cv2.CV_16S 等类型以避免溢出。
  • dx: X轴方向的导数阶数,通常为 1
  • dy: Y轴方向的导数阶数,通常为 1
  • ksize: Sobel算子的尺寸,必须是 135 或 7。默认为 3
  • scale: 可选比例因子,默认为 1
  • delta: 可选偏移量,默认为 0
  • borderType: 边界填充方式,如 cv2.BORDER_DEFAULT

代码示例:

import cv2
import numpy as np

# 加载图像并转换为灰度
img = cv2.imread('image.jpg', 0)

# 应用Sobel算子(X轴方向)
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3)
sobelx = np.uint8(np.absolute(sobelx))

# 应用Sobel算子(Y轴方向)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3)
sobely = np.uint8(np.absolute(sobely))

# 合并X轴和Y轴方向的梯度
sobel_combined = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)

# 显示结果
cv2.imshow('Sobel X', sobelx)
cv2.imshow('Sobel Y', sobely)
cv2.imshow('Sobel Combined', sobel_combined)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.Laplacian()

函数名称:
cv2.Laplacian

操作介绍:
拉普拉斯边缘检测是一种基于二阶导数的梯度算子,用于检测图像中的边缘。拉普拉斯算子通过一个3x3的卷积核来计算图像中每个像素点的二阶导数。它对图像中的局部变化非常敏感,可以检测到图像中的细小边缘和细节。然而,拉普拉斯算子对噪声也很敏感,因此在应用之前通常需要进行预平滑处理。

函数参数介绍:

  • src: 输入图像,通常是灰度图像。
  • ddepth: 输出图像的深度,通常为 -1 表示与输入图像相同深度,或使用 cv2.CV_16S 等类型以避免溢出。
  • ksize: 拉普拉斯算子的尺寸,必须是 135 或 7。默认为 1
  • scale: 可选比例因子,默认为 1
  • delta: 可选偏移量,默认为 0
  • borderType: 边界填充方式,如 cv2.BORDER_DEFAULT

代码示例:

import cv2
import numpy as np

# 加载图像并转换为灰度
img = cv2.imread('image.jpg', 0)

# 应用拉普拉斯算子
laplacian = cv2.Laplacian(img, cv2.CV_64F)
laplacian = np.uint8(np.absolute(laplacian))

# 显示结果
cv2.imshow('Laplacian', laplacian)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.Canny()

函数名称:
cv2.Canny

操作介绍:
Canny边缘检测是一种多阶段的边缘检测算法,广泛认为是最有效的边缘检测方法之一。Canny算法包括以下几个步骤:

  1. 高斯滤波: 用于减少图像中的噪声。
  2. 计算梯度强度和方向: 使用Sobel算子或其他梯度算子计算图像中每个像素点的梯度强度和方向。
  3. 非极大值抑制: 保留沿边缘方向的最大梯度值,抑制其他非最大值。
  4. 双阈值处理: 使用高低两个阈值来确定哪些边缘像素是强边缘,哪些是弱边缘。
  5. 边缘跟踪: 通过连接强边缘和相邻的弱边缘来形成完整的边缘。

Canny边缘检测能够在保持低错误率的同时检测到真实的边缘,因此在许多计算机视觉任务中非常有用。

函数参数介绍:

  • src: 输入图像,通常是灰度图像。
  • threshold1: 第一个阈值,用于双阈值处理中的低阈值。
  • threshold2: 第二个阈值,用于双阈值处理中的高阈值。
  • apertureSize: Sobel算子的孔径大小,默认为 3
  • L2gradient: 如果为 True,则使用更精确的 L2 范数来计算梯度幅值;如果为 False,则使用更快但稍微不准确的 L1 范数。

代码示例:

import cv2

# 加载图像并转换为灰度
img = cv2.imread('image.jpg', 0)

# 应用Canny边缘检测
edges = cv2.Canny(img, 100, 200)

# 显示结果
cv2.imshow('Canny Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

 14.Opencv的图像特征提取

纹理特征:LBP(局部二值模式)

形状特征:HOG(方向梯度直方图),SIFT(尺度不变特征变换)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值