《Dice Loss for Data-imbalanced NLP Tasks》阅读笔记

本文是《Dice Loss for Data-imbalanced NLP Tasks》的阅读笔记,探讨了交叉熵loss在样本不均衡问题上的局限,以及weighted cross entropy的挑战。文章提出自适应Dice loss,通过调整权重降低易学习样本的影响,适用于f1 score导向的任务,但在accuracy-oriented任务上逊于交叉熵。对于数据不平衡的NLP任务,Dice loss提供了新的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://arxiv.org/pdf/1911.02855.pdf

1.几种loss函数:

2.关于交叉熵loss

交叉熵方法是accuracy-oriented的,每个样本的贡献相同。

如果测试集上以f1 score作为主要评估,则更重视对正样本的考量。

若在样本不均衡的情况下使用交叉熵训练会造成训练和测试间的性能差异。

3.关于weighted cross entropy

系数a在[0,1]内,它可以是inverse class frequence 或是一个可调的超参数。

使用weighted cross entropy的方法和对训练数据采样的方法本质是相同的,都是在训练时改变数据的分布。

这两种方法都不常用,因为难以确定何时的a值,不合适的a可能会导致偏向较少的类型。

4.文章提出的自适应Dice loss

  ——>    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值