关于 AssertionError: Torch not compiled with CUDA enabled 问题

你好,我是 shengjk1,多年大厂经验,努力构建 通俗易懂的、好玩的编程语言教程。 欢迎关注!你会有如下收益:

  1. 了解大厂经验
  2. 拥有和大厂相匹配的技术等

希望看什么,评论或者私信告诉我!


一、前言

最近喜欢上了 ComfyUI ,在安装的过程中,出现了

AssertionError: Torch not compiled with CUDA enabled

网上有很多文章都在讲怎么解决,没啥意思,本篇会试图搞懂啥是 CUDA,为 Torch 是基于 CUDA 的

二、正文

2.1 CUDA 是什么

全称:Compute Unified Architecture,是 Nvidia’s GPUs 上的通用处理平台。不需要顺序执行的任务,可以利用GPU中的 CUDA 实现并行计算

借助 C、C++ 和 Fortran 语言支持,使用 CUDA 将计算密集型任务运行到 Nvidia GPU 非常容易。 CUDA 被用于需要大量计算能力的领域,或者可以并行化并且需要高性能的场景。机器学习、医学研究和分析、物理学、超级计算、加密货币挖掘、科学建模和模拟等领域都在使用 CUDA。

2.2 Intel® Lris(R)Xe Graphics 是什么

为什么介绍它呢?原因很简单,因为我使用的笔记本的显卡就是它。它是 Intel 的集成显卡。所以如果你的也是这样的。那么恭喜你。网上多数解决方案,肯定解决不了 AssertionError: Torch not compiled with CUDA enabled 。
在这里插入图片描述

三、AssertionError: Torch not compiled with CUDA enabled 怎么解

3.1 步骤1:检查GPU是否支持CUDA

首先,确保你的GPU支持CUDA。你可以访问NVIDIA官网查看你的GPU是否支持CUDA。如果你的GPU不支持CUDA,那么你需要更换支持CUDA的GPU或者在CPU上运行你的PyTorch程序。

3.2 安装支持CUDA的PyTorch版本

如果你确定你的GPU支持CUDA,那么接下来需要安装支持CUDA的PyTorch版本。你可以从PyTorch官网下载对应你GPU型号和操作系统的安装包。在下载安装包时,请确保选择支持CUDA的版本。

3.3 安装CUDA工具包

在安装PyTorch之前,你需要先安装CUDA工具包。你可以从NVIDIA官网下载对应你GPU型号和操作系统的CUDA工具包。安装完成后,你需要将CUDA工具包的路径添加到系统环境变量中。具体操作方法可以参考CUDA安装文档。

3.4 重新安装PyTorch

安装好CUDA工具包后,重新安装PyTorch。按照之前下载的PyTorch安装包进行安装,确保选择与你的GPU和操作系统相匹配的版本。在安装过程中,确保勾选“Install CUDA”选项,以便将PyTorch与CUDA集成。

3.5 验证安装

完成以上步骤后,验证PyTorch是否正确安装了CUDA支持。打开Python终端,输入以下命令:

import torch

如果成功导入PyTorch库,那么说明你已经成功安装了支持CUDA的PyTorch版本。接下来,你可以尝试运行你的PyTorch程序,看看是否还会出现“AssertionError: Torch not compiled with CUDA enabled”错误。

3.6 总结

  1. 如何解:
    进入 pytorch官网,https://pytorch.org/get-started/locally/ 选择合适的方式下载合适的包
  2. 合适选择方法,例如 inter 显卡,不要用 cuda 相关的方法:

torch.device(torch.cuda.current_device())

三、总结

CUDA 是 Nvidia’s GPUs 上的通用处理平台,用于实现并行计算。如果出现 “AssertionError: Torch not compiled with CUDA enabled” 错误,需要检查GPU是否支持CUDA,并安装支持CUDA的PyTorch版本以及CUDA工具包,然后重新安装PyTorch进行验证。

另外不建议,程序员购买 非 Nvidia 的GPU的电脑,一定要注意,程序员买电脑要随大流,用大众的东西,而非小众的,比如 intel GPU,我是没办法,用的是公司电脑。

### 解决方案 当遇到 `AssertionError: Torch not compiled with CUDA enabled` 的问题时,通常是因为 PyTorch 安装版本不支持当前系统的 GPU 或者安装的是 CPU 版本而非 GPU 版本。以下是详细的解决方案: #### 1. 验证当前环境中的PyTorch是否启用了CUDA 可以通过以下代码验证当前环境中 PyTorch 是否已启用 CUDA 支持: ```python import torch print(torch.cuda.is_available()) # 如果返回 False,则表示未启用 CUDA ``` 如果上述代码打印的结果为 `False`,则说明当前使用的 PyTorch 是基于 CPU 的版本或者系统缺少必要的 NVIDIA 驱动程序。 --- #### 2. 卸载现有的PyTorch并重新安装GPU版 卸载现有 PyTorch 并确保安装适合的 GPU 加速版本。可以使用 pip 命令完成此操作。 ##### (a) 卸载旧版本 ```bash pip uninstall torch torchvision torchaudio ``` ##### (b) 安装最新 GPU 版本 访问 [PyTorch官网](https://pytorch.org/get-started/locally/) 获取最新的安装命令。例如,在 Windows 上安装带有 CUDA 11.7 支持的 PyTorch 可能如下所示: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 ``` 对于 Linux 和 macOS 用户,请根据自己的操作系统和显卡驱动情况调整 URL 中的 CUDA 版本号。 注意:确保本地已经安装了匹配的 NVIDIA 显卡驱动以及 cuDNN 库[^3]。 --- #### 3. 更新依赖库路径修改建议 按照引用描述的内容,将 `pytorch_lightning.utilities.distributed` 替换为 `pytorch_lightning.utilities.rank_zero` 后可能涉及部分兼容性修复工作。具体来说,这一步骤主要是为了适配新版本 API 调整的需求[^1]。 执行替换后需确认项目其余模块不受影响,并测试整个流程能否正常运行。 --- #### 4. 关于MyBatis多依赖冲突排查 针对第二个引用提到的情况——即存在 Unsatisfied Dependency 错误提示字段 `'baseMapper'`,通过清理多余 mybatis 相关依赖项来解决问题是一个合理方向。然而即使仅保留单一指定 Starter (`mybatis-plus-boot-starter`) ,仍可能出现错误的原因可能是 Spring Boot 自身扫描机制未能正确定位 Mapper 接口定义位置[^2]。 因此推荐进一步检查以下几个方面: - **确保 XML 文件配置无误** ```xml <!-- application.yml --> mybatis-plus: mapper-locations: classpath*:mapper/*.xml ``` - **检查包结构与组件扫描范围一致性** 最后再次尝试启动应用观察日志输出变化即可判断根本原因所在。 --- ### 总结 综上所述,要彻底解决 `AssertionError: Torch not compiled with CUDA enabled` 这一异常状况,关键是先核实所用框架实例化过程中实际调取到哪个底层实现形式;接着依据硬件条件挑选恰当发行渠道获取对应二进制文件重置全局变量初始化逻辑链路从而达成预期目标效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shengjk1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值