宋浩高等数学笔记(二)导数与微分

目录

2.1导数的概念

 2.2函数的求导法则

2.3高阶导数

2.4隐函数求导and参数方程求导


考研数学一大纲中对本章的要求:

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线切线方程法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

3.了解高阶导数的概念,会求简单函数的高阶导数.

4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.

6.掌握用洛必达法则求未定式极限的方法。


与高中接触到的导数原理一致,只不过在定义方面的要求更为严格细致:

  • 从物理学的角度理解,导数本质上就是自变量改变量和因变量改变量之比的极限值~
  • 需要注意,对于导数的定义来说,dy/dx是一个整体的符号,不能拆开进行加减乘除等操作
  • 根据定义可知,导数本质上是一种极限
  • 所谓根据定义求导,本质上就是将函数式按照定义写出来,并计算极限值
  • 左右导数与左右极限和左右连续的定义一致,都是从两侧逼近的情况
  • 导数的几何意义是过某点处切线的斜率,而可导的几何含义是——光滑曲线(即切线不能垂直于x轴)
  • 对于连续的几何意义来说,可以理解为一笔画的函数,由此可知连续的要求是比可导要低的。也就是说,可导一定连续,连续不一定可导~

2.1导数的概念

  • 和差积商的求导法则,和高中的一致,这里不再赘述,需要注意的是,这些法则对于更多项的式子依然成立——本质上就是局部复合拆开~
  • 对于三角函数,高中没有学余切、正割和余割三种,需要重点记忆,这对于之后学习积分很关键~
  • 对于反函数的求导法则,可以简单地记忆为原函数导数的倒数,同理要注意不可分割的法则(dx/dy)~
  • 这里要重点记忆几个反三角函数的求导公式:arcsin、arccos、arctan和arccot四种~
  • 复合函数的求导法则,可以理解为一种链式的传导——外层求导再乘以内层的导数~
  • 对于幂指函数,通常我们需要用到对数恒等变化,如果中学底子不好的同学理解不了这里,建议去单独补充一下知识认知~
  • 对于隐函数求导来说,本质上就是y没有被x显式表出,此时,我们只需要将其记为y'即可~

 2.2函数的求导法则

  •  高阶导数就是连续进行求导,同高中类似,需要关注(u+v)^ n 型的导数,其原理和杨辉三角形类似~
  • 对于参数求导,只需要用y的表达式和x的表达式分别对t进行求导,再做商,即可得到目标答案~

2.3高阶导数

2.4隐函数求导and参数方程求导

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lyric群青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值