导数和微分是微积分学中的重要概念。导数指的是一个函数在某一点处的变化率,也可以理解为函数曲线在该点处的切线斜率。微分则是对一个函数进行微小的变化,并计算这个变化所引起的函数值的变化量。导数和微分的概念密切相关,它们是微积分学中的基础,也是应用数学中的常见问题解决方法之一。导数可以帮助我们研究函数的变化趋势,了解函数的最大值、最小值、拐点以及函数的凸凹性质等。微分则是导数的一个应用,它是对函数进行微小的变化,并计算这个变化所引起的函数值的变化量。同上期一样,插播考研数学一对于这一章的大纲:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法。
对一个函数积分和对它微分,这两个运算互为逆运算。 求原函数的过程是不定积分运算;求导的过程是微分运算。 一个函数的微分与它的导数也略有区别,微分是函数的线性增量(变化),而导数是函数的变化率(也就是函数值变化/自变量变化)。
可导性和可微性是等价的,同时导数值和微分值是相等的~
本章重点题目较少,除了*标题页没什么特别难的,本帖出于总结性的角度考虑并未囊概全部的*标,最后会出一期*标题的全部内容整理,在攻克重难点的基础上更上一层楼。
1.根据定义求某点处的导数值
2.通过定义证明导数
3.左右导数的相关计算
4.与切线有关的导数应用
5.连续性与可导性的相关例题
6.求导合集
7.高阶导数
8.隐函数求导
9.对数求导法
10.参数方程的高阶导数
11.求函数的微分12.根式的近似计算
(对于根式的近似计算,课本上给出的理解是微分本身的定义,然后改用等价无穷小整理,还有一种理解便是泰勒公式,到了第九章的全微分,还有另一种计算近似值的方式。)
1.用定义求导数时,要先根据其定义写出极限式,再计算极限值~
2.通过定义证明倒数也是同理,定义式是关键~
3.左右导数计算,重点在于考察两种逼近方式的相关计算~
4.计算切线,比较容易,只需要代入点球斜率即可
5.有关连续与可导相关的证明题,还是很重要的,建议加强练习,考研中也是重点~
6.求导,高中就有基础,没什么难度
7-10,同样也是计算题,多加练习即可
11. 微分本质上就是求导的逆运算
12.根式的近似计算,看看就好