2020-09-16

16. 最接近的三数之和(3Sum Closest)[leetcode刷题笔记]

给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。

 

示例:

输入:nums = [-1,2,1,-4], target = 1
输出:2
解释:与 target 最接近的和是 2 (-1 + 2 + 1 = 2) 。
 

提示:

3 <= nums.length <= 10^3
-10^3 <= nums[i] <= 10^3
-10^4 <= target <= 10^4

题解:

这一题翻了翻网上,都是通过双指针来实现的,目前我也没有想到什么更好的方法
1.首先利用stl快排对输入数据排序,时间复杂度 O(nlogn)
2.在数组 nums 中,进行遍历,选取一个固定值a,下标为i
3.使前指针指向 start = i + 1 处,后指针指向 end = nums.length - 1 处,也就是结尾处
根据 sum = nums[i] + nums[start] + nums[end] 的结果,因为数组有序,如果 sum > target 则 相左移动右指针,如果 sum < target 则 向右移动右指针,如果 sum == target 则直接返回结果
整个遍历过程,固定值为 n 次,双指针为 n 次,时间复杂度为 O(n^2)
总时间复杂度:O(nlogn) + O(n^2) = O(n^2)
 

class Solution {
public:
    int threeSumClosest(vector<int>& nums, int target) {
        int result=1000000;//根据题目的输入设置一个很远的数,这样更新result值时可以保证距离target比当前结果远
        sort(nums.begin(),nums.end());//升序排序

        for(int i=0;i<nums.size()-2;i++)
        {
            int j=i+1,k=nums.size()-1;
            int tar=target-nums[i];
            int num=nums[j]+nums[k];

            while(j<k)
            {
                //首先更新num值
                if(nums[j]+nums[k]==tar)
                    return target;
                else
                    {
                        if(abs(nums[j]+nums[k]-tar)<abs(num-tar))//如果当前的b c之和离target-a更近,就更新num值
                        {
                            num=nums[j]+nums[k];
                        }
                    }

                //移动指针
                if(nums[j]+nums[k]<tar)
                    j+=1;
                else
                    k-=1;
            }

            //如果这一轮迭代得到的结果比原来的结果更好,就更新result
            if(abs(nums[i]+num-target)<abs(result-target))
            {
                result=nums[i]+num;
            }

        }

        return result;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值