First Target and Opinion then Polarity: A Two-stage Correlation Enhanced Network for Aspect Sentimen

《First Target and Opinion then Polarity: A Two-stage Correlation
Enhanced Network for Aspect Sentiment Triplet Extraction》论文阅读
文章地址:

文章介绍

  针对于以前处理ASTE任务的方式存在难以建立不用情感元素抽取之间的联系以及缺乏它们之间的交互等问题,该篇文章仿照陈丹琦的论文《A frustratingly easy approach for entity and relation extraction.》的方式建立了一个两阶段的任务处理框架。在第一阶段通过序列标注的方式联合抽取方面实体和意见词,然后人工添加了可感知标签标记(Perceivable Pair tag)用来标明方面实体和意见词的位置。同时通过限制性的token领域注意力机制使得判断某一个方面实体-意见词对的时候不会受到其他词对的干扰。最后,通过Perceivable Pair tag得到相应的情感标签。

文章方法

方面实体和意见词抽取

  对于方面实体和意见词的抽取正如之前所说的通过BIOES标注体系外加一个softmax函数判断得到。

联合匹配和情感分类

在这里插入图片描述
  作者人工添加的Perceivable Pair tag正如上图所示,简化版如下,作者这里是对于方面实体和意见词对的每一种可能均进行了穷举,没有加以判断。
在这里插入图片描述
  然后作者将得到的所有Perceivable Pair tag附在原句后面,并通过位置ID和段ID保留其在原句的位置信息,段ID标明其为第2个句子的输入

Restricted Attention Field

  为了避免判断当前词对对应的情感标签会受到其它词对的干扰问题,作者这里应用了一个注意力机制,即判断当前词对时,模型只关注当前词对和原句,不会关注于其它地方,公式如下:
在这里插入图片描述
  但由于没有源码,不知道具体实现当时是怎么样的。

情感分类

  由于作者没有对无效词对进行判断,所以作者所判断的情感标签有4类,POS、NEU、NEG及O代表无效。判断方式也比较简单,BERT+线性层+softmax即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值