[李宏毅机器学习2020笔记] 1.introduction

1. 基本概念

⚪李宏毅老师眼中机器学习的定义——自动找函数

无论是监督学习、非监督学习、强化学习 都是某种信息或者情境到一种结果的映射

⚪根据函数映射结果的离散性和连续性,可以分为分类和回归问题

classification and regression

⚪在分类和回归之外,更高的要求是有generation的能力

产生新的图片和文字等等

2. 告诉机器要找什么样的函数

监督学习——直接告诉模型要一部分的映射结果,找到loss最低的函数

强化学习——并不指明每一步的错误或正确性,机器由最后的输赢结果来判断自己那些步骤是错误或者正确的

非监督学习——从没有标签的数据中学习(还不太理解,要通过具体的例子)

神经网络实际上就是框定了函数的一个寻找范围,比如线性变换+激活函数

3. 机器怎样找出正确的函数

梯度下降方法

4. 本课程涉及的一些前沿研究

可解释性AI——这张图是猫的理由

对抗攻击(adversarial attack)——如何解决错误的数据

网络压缩(network compression)——简化网络从而简化计算量

非监督学习——自动编码器

异常检测(anomaly detection)——机器如何知道自己是不知道的

迁移学习——不同的数据集的迁移能力

元学习(meta learning)——从程序中学习产生程序的能力

终身学习——不停止学习,不断寻找新的任务

5. 课程安排和学习路线

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
李宏的2020机器学习笔记中,有一个关于注意力机制(Attention)的部分。这部分内容主要介绍了生成模型(Generation)、注意力(Attention)、生成的技巧(Tips for Generation)以及指针网络(Pointer Network)。在生成模型中,主要讲述了如何生成一个有结构的对象。接下来介绍了注意力机制,包括一些有趣的技术,比如图片生成句子等。在生成的技巧部分,提到了一些新的技术以及可能遇到的问题和偏差,并给出了相应的解决方案。最后,稍微提到了强化学习。其中还提到了在输出"machine"这个单词时,只需要关注"机器"这个部分,而不必考虑输入中的"学习"这个部分。这样可以得到更好的结果。另外,还提到了关于产生"ei"的方法,其中有研究应用了连续动态模型自注意力(Self-attention)来学习位置编码的方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [2020李宏机器学习笔记-Condition Generation by RNN&Attention](https://blog.csdn.net/zn961018/article/details/117593813)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [李宏机器学习学习笔记:Self-attention](https://blog.csdn.net/weixin_44455827/article/details/128094176)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值