完整源代码项目地址,关注博主私信'源代码'后可获取
1.问题描述
10个小孩围成一圈分糖果,老师分给第1个小孩10块,第2个小孩2块,第3个小孩8块,第4个小孩22块,第5个小孩16块,第6个小孩4块,第7个小孩10块,第8个小孩6块,第9个小孩14块,第10个小孩20块。然后所有的小孩同时将手中的糖分一半给右边的小孩;糖块数为奇数的人可向老师要一块。问经过这样几次后大家手中的糖一样多?每人各有多少块糖?
2.问题分析
根据题意,10个小孩开始时所拥有的糖果数是不同的,但分糖的动作却是相同的,即“所有的小孩同时将手中的糖分一半给右边的小孩;糖块数为奇数的人可向老师要一块”。因此,这是一个典型的可使用循环结构来解决的问题。
将老师开始给每个小孩分配的糖果数作为循环的初始条件,以“所有的小孩同时将手中的糖分一半给右边的小孩;糖块数为奇数的人可向老师要一块”这个重复的动作作为循环体,循环的结束条件为所有小孩手中的糖块数一样多。在循环体中,还需要判断糖块数的奇偶性,奇偶性不同完成的操作也不相同,显然这需要使用一个选择结构来实现。
3.算法设计
在问题分析中,我们已经确定了该问题使用循环结构来解决。那么如何存放每个小孩初始时所拥有的糖果数呢?这里考虑使用数组来存放老师开始给每个小孩分配的糖果数,因为有10个小孩,故定义一个长度为10的整型数组即可。在循环过程中,糖果每经过一次重新分配,就打印输出一次,直到最后一次打印时,10个小孩所拥有的糖果数都相同,此时结束循环。
4.确定程序框架
(1)定义整型数组存放初始条件
sweet = [10, 2, 8, 22, 16, 4, 10, 6, 14, 20]
将老师开始给每个小孩分配的糖果数存放到sweet数组中。
(2)循环结构实现框架
while (10个孩子手中的糖果数不相同):
for i in range(0, 10):
if sweet[i] % 2 == 0:
sweet[i] = sweet[i] // 2
t