完整源代码项目地址,关注博主私信'源代码'后可获取
1.问题描述
按递增顺序依次列出所有分母为40、分子小于40的最简分数。
2.问题分析
分子和分母只有公因数1的分数,或者说分子和分母是互质数的分数,叫作最简分数,又称既约分数。如2/3、8/9、3/8等就是最简分数。
方法1:求分子小于40的最简分数,可以对分子采用穷举的方法。根据最简分数的定义可知,分子和分母的最大公约数为1,因此可以利用最大公约数的方法,判定分子与40是否构成真分数。
方法2:分子和分母的公因数只有1的分数为最简分数,若分子和分母在1~分子(num2)
3.算法分析
变量num1、num2分别用于存储分母和分子的值。
方法1:
求最大公约数一般采用辗转相除的思想,具体步骤概括如下:
1)用较大的数num1除以较小的数num2,得到的余数存储到变量temp中,即temp=num1%num2。
2)用较小的除数num2和得出的余数temp构成新的一对数,并分别赋值给num1和num2,继续做上面的除法。
3)当num2为0时,num1就是最大公约数;否则重复步骤1和步骤2。
对于辗转相除法的思想将在4.4节详细说明,此处先跳过。
方法2:
分数的分子仍然采用穷举法。对于每一个可能的分子,都要判断在1~num2范围内分数num1/num2除了1之外是否有其他的公因数,循环初值为2。
在2~num2内若有一个数j能同时整除分子、分母,说明此分数不是最简分数,j~num2之间的数也无须再判断,利用break语句结束循环,循环结束时j<num2。循环过程中若没有一个数可以同时整除分子和分母,即条件if(num1%j0)and(num2%j0)不成立,则break语句不执行,循环正常结束,即条件j≤num2不成立,循环结束时j>num2。利用j与num2的大小关系可判断分数是否为最简分数。
4.确定程序框架
辗转相除法求最大公约数的流程图见4.4节,下面给出方法2的流程图,如图4.4所示。

5.完整的程序
代码1(对应方法1):
if __name__ == "__main__":
print("分母为40,分子小于40的最简分数有:")
n = 0
for i in range(1, 40):