Python算法100例-4.2 列出真分数序列

本文详细描述了如何通过两种方法计算分母为40且分子小于40的最简分数,并提供了对应的Python代码。随后扩展至分母小于等于40的情况。算法涉及穷举、最大公约数的求解以及辗转相除法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

完整源代码项目地址,关注博主私信'源代码'后可获取

1.问题描述

按递增顺序依次列出所有分母为40、分子小于40的最简分数。

2.问题分析

分子和分母只有公因数1的分数,或者说分子和分母是互质数的分数,叫作最简分数,又称既约分数。如2/3、8/9、3/8等就是最简分数。

方法1:求分子小于40的最简分数,可以对分子采用穷举的方法。根据最简分数的定义可知,分子和分母的最大公约数为1,因此可以利用最大公约数的方法,判定分子与40是否构成真分数。

方法2:分子和分母的公因数只有1的分数为最简分数,若分子和分母在1~分子(num2)

3.算法分析

变量num1、num2分别用于存储分母和分子的值。

方法1:

求最大公约数一般采用辗转相除的思想,具体步骤概括如下:

1)用较大的数num1除以较小的数num2,得到的余数存储到变量temp中,即temp=num1%num2。

2)用较小的除数num2和得出的余数temp构成新的一对数,并分别赋值给num1和num2,继续做上面的除法。

3)当num2为0时,num1就是最大公约数;否则重复步骤1和步骤2。

对于辗转相除法的思想将在4.4节详细说明,此处先跳过。

方法2:

分数的分子仍然采用穷举法。对于每一个可能的分子,都要判断在1~num2范围内分数num1/num2除了1之外是否有其他的公因数,循环初值为2。

在2~num2内若有一个数j能同时整除分子、分母,说明此分数不是最简分数,j~num2之间的数也无须再判断,利用break语句结束循环,循环结束时j<num2。循环过程中若没有一个数可以同时整除分子和分母,即条件if(num1%j0)and(num2%j0)不成立,则break语句不执行,循环正常结束,即条件j≤num2不成立,循环结束时j>num2。利用j与num2的大小关系可判断分数是否为最简分数。

4.确定程序框架

辗转相除法求最大公约数的流程图见4.4节,下面给出方法2的流程图,如图4.4所示。

在这里插入图片描述

5.完整的程序

代码1(对应方法1):

# 列出真分数序列——利用辗转相除法
if __name__ == "__main__":
    print("分母为40,分子小于40的最简分数有:")
    n = 0                                           # 计数器,记录最简分数的个数
    for i in range(1, 40):      
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飘逸高铁侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值