# 最简单的最短路径算法 - Floyd_Warshall算法
标签(空格分隔): 算法
参考《啊哈算法》第六章第一节,PDF在线阅读
介绍
详细介绍请看PDF,个人理解,这是一个暴力+动态规划的思想,在二维数组中每次都从第1,2,3 … N节点中转一次,如果可以中转且路径较小,那么我们就更新存储路径的二维数组。
这个算法可以解决多源最短路径问题
时间复杂度
O(N3)
代码
/**
* 多源最短路径
* Floyd_Warshall算法
* 时间复杂度 O(N^3)
*/
#include <iostream>
#include <climits>
using namespace std;
int n;
void print(int e[10][10]) {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
printf("%15d", e[i][j]);
}
printf("\n");
}
printf("\n");
}
int main() {
int e[10][10] = {0}, m;
cin >> n >> m;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
if (i == j)
e[i][j] = 0;
else
e[i][j] = INT_MAX;
int a, b, c;
for (int i = 1; i <= m; i++) {
cin >> a >> b >> c;
e[a][b] = c;
}
for (int k = 1; k <= n; k++) { //让二维数组依次从k点中转一下
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) {
//可以中转取较小值,无法到达就跳过
if (e[i][j] > e[i][k] + e[k][j] && e[i][k] != INT_MAX && e[k][j] != INT_MAX)
e[i][j] = e[i][k] + e[k][j];
}
// print(e);
}
print(e);
return 0;
}
/**
5 8
1 3 2
1 5 4
2 5 2
3 4 3
4 2 5
5 2 5
5 3 3
5 4 1
0 9 2 5 4
2147483647 0 5 3 2
2147483647 8 0 3 10
2147483647 5 10 0 7
2147483647 5 3 1 0
4 8
1 2 2
1 3 6
1 4 4
2 3 3
3 1 7
3 4 1
4 1 5
4 3 12
0 2 5 4
9 0 3 4
6 8 0 1
5 7 10 0
*/