Description
今年夏天,NOI在SZ市迎来了她30周岁的生日。来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会。
全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接。为了方便起见,我们将全国的n个城市用 1 到 n 的整数编号。其中SZ市的编号为 1。对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 f
v 以及到父亲城市道路的长度 s
v。
从城市 v 前往SZ市的方法为:选择城市 v 的一个祖先 a,支付购票的费用,乘坐交通工具到达 a。再选择城市 a 的一个祖先 b,支付费用并到达 b。以此类推,直至到达SZ市。
对于任意一个城市 v,我们会给出一个交通工具的距离限制 l
v。对于城市 v 的祖先 a,只有当它们之间所有道路的总长度不超过 l
v 时,从城市 v 才可以通过一次购票到达城市 a,否则不能通过一次购票到达。对于每个城市 v,我们还会给出两个非负整数 p
v,q
v 作为票价参数。若城市 v 到城市 a 所有道路的总长度为 d,那么从城市 v 到城市 a 购买的票价为 dp
v+q
v。
每个城市的OIer都希望自己到达SZ市时,用于购票的总资金最少。你的任务就是,告诉每个城市的OIer他们所花的最少资金是多少。
Input
第 1 行包含2个非负整数 n,t,分别表示城市的个数和数据类型(其意义将在后面提到)。输入文件的第 2 到 n 行,每行描述一个除SZ之外的城市。其中第 v 行包含 5 个非负整数 f_v,s_v,p_v,q_v,l_v,分别表示城市 v 的父亲城市,它到父亲城市道路的长度,票价的两个参数和距离限制。请注意:输入不包含编号为 1 的SZ市,第 2 行到第 n 行分别描述的是城市 2 到城市 n。
Output
输出包含 n-1 行,每行包含一个整数。其中第 v 行表示从城市 v+1 出发,到达SZ市最少的购票费用。同样请注意:输出不包含编号为 1 的SZ市。
Sample Input
7 3 1 2 20 0 3 1 5 10 100 5 2 4 10 10 10 2 9 1 100 10 3 5 20 100 10 4 4 20 0 10
Sample Output
40 150 70 149 300 150
Hint
对于所有测试数据,保证 0≤pv≤106,0≤qv≤1012,1≤fv<v;保证 0<sv≤lv≤2×1011,且任意城市到SZ市的总路程长度不超过 2×1011。
输入的 t 表示数据类型,0≤t<4,其中:
当 t=0 或 2 时,对输入的所有城市 v,都有 fv=v-1,即所有城市构成一个以SZ市为终点的链;
当 t=0 或 1 时,对输入的所有城市 v,都有 lv=2×1011,即没有移动的距离限制,每个城市都能到达它的所有祖先;
当 t=3 时,数据没有特殊性质。
n=2×10^5
最近状态不太好,拖了这么久才过,树分治+斜率优化,这题的斜率不能乘,会爆longlong,还是老老实实用double吧
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<bitset>
#include<string>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define rep(i,j,k) for (int i = j;i <= k; i++)
#define repd(i,j,k) for (int i = j;i >= k; i--)
#define loop(i,j,k) for (int i = j;i != -1; i = k[i])
typedef long long LL;
const int low(int x) { return x&-x; }
const int INF = 0x7FFFFFFF;
const int mod = 1e9 + 7;
const int maxn = 4e5 + 10;
const LL Max = 1LL << 62;
int n, m, fa[maxn];
LL p[maxn], q[maxn], d[maxn], f[maxn], x, L[maxn];
bool cmp(const int &x, const int &y)
{
return d[x] - L[x] > d[y] - L[y];
}
struct Tree
{
int ft[maxn], nt[maxn], u[maxn], sz;
int mx[maxn], ct[maxn], vis[maxn];
int a[maxn], b[maxn], c[maxn];
void clear(int n)
{
mx[sz = 0] = INF;
rep(i, vis[0] = 1, n) vis[i] = 0, ft[i] = -1;
}
void AddEdge(int x, int y)
{
u[sz] = y; nt[sz] = ft[x]; ft[x] = sz++;
u[sz] = x; nt[sz] = ft[y]; ft[y] = sz++;
}
int dfs(int x, int fa, int sum)
{
int y = mx[x] = (ct[x] = 1) ^ 1;
loop(i, ft[x], nt)
{
if (vis[u[i]] || u[i] == fa) continue;
int z = dfs(u[i], x, sum);
ct[x] += ct[u[i]];
mx[x] = max(mx[x], ct[u[i]]);
y = mx[y] < mx[z] ? y : z;
}
mx[x] = max(mx[x], sum - ct[x]);
return mx[x] < mx[y] ? x : y;
}
bool check(int x, int y, int z)
{
return 1.0*(f[y] - f[x]) / (d[y] - d[x]) <= 1.0*(f[z] - f[y]) / (d[z] - d[y]);
}
void get(int x, int fa, int &t)
{
c[++t] = x;
loop(i, ft[x], nt)
{
if (u[i] == fa || vis[u[i]]) continue;
get(u[i], x, t);
}
}
int find(int l, int r, LL x)
{
if (l == r) return b[r];
int q = l, h = r - 1, m;
while (q <= h)
{
m = q + h >> 1;
if (1.0*(f[b[m + 1]] - f[b[m]]) / (d[b[m + 1]] - d[b[m]]) <= x) h = m - 1;
else q = m + 1;
}
return b[q];
}
void work(int x, int sum)
{
//if (sum < 2) return;
int y = dfs(x, -1, sum);
vis[y] = 1;
if (x != y) work(x, sum - ct[y]);
int t = -1, l = 0, r = -1, tt, g = 0;
loop(i, fa[y], fa)
{
if (i == 0) break;
a[++t] = i;
if (vis[i]) break;
}
get(y, fa[y], tt = -1);
sort(c, c + tt + 1, cmp);
rep(i, 0, tt)
{
while (g <= t&&d[a[g]] >= d[c[i]] - L[c[i]])
{
while (l < r&&check(b[r - 1], b[r], a[g])) --r;
b[++r] = a[g++];
}
if (l > r) continue;
int k = find(l, r, p[c[i]]);
//while (k > l && 1.0*(f[b[k]] - f[b[k - 1]]) / (d[b[k]] - d[b[k - 1]]) <= p[c[i]]) k--;
//k = b[k];
f[c[i]] = min(f[c[i]], f[k] + (d[c[i]] - d[k])*p[c[i]] + q[c[i]]);
}
loop(i, ft[y], nt)
{
if (vis[u[i]] || u[i] == fa[y]) continue;
work(u[i], ct[u[i]]);
}
vis[y] = 0;
}
}solve;
int main()
{
scanf("%d%d", &n, &m);
solve.clear(n);
d[1] = f[1] = fa[1] = 0;
rep(i, 2, n)
{
scanf("%d%lld%lld%lld%lld", &fa[i], &x, &p[i], &q[i], &L[i]);
solve.AddEdge(i, fa[i]);
d[i] = d[fa[i]] + x;
f[i] = Max - 1 << 1;
}
solve.work(1, n);
rep(i, 2, n) printf("%lld\n", f[i]);
return 0;
}