Problem Description
The shorter, the simpler. With this problem, you should be convinced of this truth.
You are given an array A of N postive integers, and M queries in the form (l,r) . A function F(l,r) (1≤l≤r≤N) is defined as:
F(l,r)={AlF(l,r−1) modArl=r;l<r.
You job is to calculate F(l,r) , for each query (l,r) .
You are given an array A of N postive integers, and M queries in the form (l,r) . A function F(l,r) (1≤l≤r≤N) is defined as:
F(l,r)={AlF(l,r−1) modArl=r;l<r.
You job is to calculate F(l,r) , for each query (l,r) .
Input
There are multiple test cases.
The first line of input contains a integer T , indicating number of test cases, and T test cases follow.
For each test case, the first line contains an integer N(1≤N≤100000) .
The second line contains N space-separated positive integers: A1,…,AN (0≤Ai≤109) .
The third line contains an integer M denoting the number of queries.
The following M lines each contain two integers l,r (1≤l≤r≤N) , representing a query.
The first line of input contains a integer T , indicating number of test cases, and T test cases follow.
For each test case, the first line contains an integer N(1≤N≤100000) .
The second line contains N space-separated positive integers: A1,…,AN (0≤Ai≤109) .
The third line contains an integer M denoting the number of queries.
The following M lines each contain two integers l,r (1≤l≤r≤N) , representing a query.
Output
For each query
(l,r)
, output
F(l,r)
on one line.
Sample Input
1 3 2 3 3 1 1 3
Sample Output
2求一个区间最左端的数对于右端的全部数字取模,由于每次取模至少减半,所以取模的次数不会很多,用线段树来寻找右端小于等于当前值的第一个数字即可。#include<set> #include<map> #include<ctime> #include<cmath> #include<stack> #include<queue> #include<bitset> #include<cstdio> #include<string> #include<cstring> #include<iostream> #include<algorithm> #include<functional> #define rep(i,j,k) for (int i = j; i <= k; i++) #define per(i,j,k) for (int i = j; i >= k; i--) #define loop(i,j,k) for (int i = j;i != -1; i = k[i]) #define lson x << 1, l, mid #define rson x << 1 | 1, mid + 1, r #define ff first #define ss second #define mp(i,j) make_pair(i,j) #define pb push_back #define pii pair<int,int> #define in(x) scanf("%d", &x); using namespace std; typedef long long LL; const int low(int x) { return x&-x; } const double eps = 1e-8; const int INF = 0x7FFFFFFF; const int mod = 1e9 + 7; const int N = 1e5 + 10; int T, n, m,l,r; int a[N],f[N<<2]; void build(int x,int l,int r) { if (l==r) {in(f[x]); a[l]=f[x];} else { int mid=l+r>>1; build(lson); build(rson); f[x]=min(f[x<<1],f[x<<1|1]); } } int find(int x,int l,int r,int ll,int rr,int u) { if (f[x] > u) return rr+1; if (ll<=l&&r<=rr) { if (l==r) return l; int mid=l+r>>1; if (f[x<<1]<=u) return find(lson,ll,rr,u); else return find(rson,ll,rr,u); } else { int mid=l+r>>1,res; if (ll<=mid) { res=find(lson,ll,rr,u); if (res<=rr) return res; } if (rr>mid) { res=find(rson,ll,rr,u); if (res<=rr) return res; } return rr+1; } } int main() { in(T); while (T--) { scanf("%d",&n); build(1,1,n); scanf("%d",&m); while (m--) { scanf("%d%d",&l,&r); int ans=a[l]; while (l < r) { int q = find(1,1,n,l+1,r,ans); if (q<=r) ans%=a[q]; l=q; } printf("%d\n",ans); } } return 0; }