如何快速掌握大数据知识,按照学习路线来

任何学习过程都需要一个科学合理的学习路线,才能够有条不紊的完成我们的学习目标。大数据所需学习的内容纷繁复杂,难度较大,有一个合理的大数据学习路线图帮忙理清思路就显得尤为必要。

大数据作为一个新兴的热门行业,吸引了很多人,但是对于大数据新手来说,按照什么路线去学习,才能够学习好大数据,实现从大数据菜鸟到高手的转变。这是很多想要学习大数据的朋友们想要了解的。

今天我们就来和大家分享下大数据新手从0开始学习大数据,实现菜鸟到高手的转变的学习路线。希望能够帮助想要学习大数据的朋友。想要在大数据这个领域汲取养分,让自己壮大成长。分享方向,行动以前先分享下一个大数据交流分享资源
群870097548,欢迎想学习,想转行的,进阶中你加入学习。

以下是大数据新手学习路线的正文:

 

第一阶段:linux 系统

这章是基础课程,帮大家进入大数据领域打好 Linux 基础,以便更好地学习 Hadoop, NOSQL, Oracle, MYSQL, Spark, Storm 等众多课程。因为企业中 无一例外的是使用 Linux 来搭建或部署项目。

第二阶段:大型网站高并发处理

通过本章的学习大家将会了解大数据的源头,数据从何而来,继而更好的了解大数据。并且通过学习如果处理大型网站高并发问题反向更深入的学习了 Linux 同时站在了更高的角度去触探了架构。

第三阶段:Hadoop 分布式文件系统:HDFS

本阶段是进入“大数据”的一个入口,需要掌握HDFS 的基本原理,知道为什么它可 以存储海量数据,知道“百度网盘”本身是什么?能否自己也能实现一个网盘。让大家一开 始就进入大数据实战状态。

第四阶段:Hadoop 分布式计算框架:Mapreduce

该阶段侧重对MR 的原理实现,案例应用为主线,附以源码分析让学生来更清晰的理解何为分布式计算,计算的并行、计算的向数据移动、计算的本地化数据读取等。

第五阶段:Hadoop 离线体系:Hive

本阶段介绍Hive 是基于Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql 查询功能,可以将sql 语句转换为MapReduce 任务进行运行。其优点是学习成本低,可以通过类SQL 语句快速实现简单的MapReduce 统计,不必开发专门的MapReduce 应用,十分适合数据仓库的统计分析。

第六阶段:Hadoop 离线计算体系:Hbase

本阶段介绍HBase 是一个分布式的、面向列的开源数据库。是基于Google 开源的bigtable的实现,面向列的非关。

第七阶段:Zookeeper 开发

Zookeeper 在布式集群Adop 生态图)中的地位越来越突出,对分布式应用的开发也提供了极大便利,这也是这里我们带领大家深入学氢Zookeeper 的原因。本课程主要内容包括Zookeeper 深入、客户端开发(Java 编程,案例开发)、日常运维、web 界面监控。这里学好Zookeeper。对后面学习复他技术至关重要。

第八阶段:elasticsearch 分布式搜索

Elastic Search 是一个基于 Lucene 构建的开源,分布式, RESTFUL 搜索引擎。设计用 于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。支持通过 HTTP 使用 JsON 进行数据索引。

第九阶段:CDH 集群管理

Cloudera 为了让 Hadoop 的配置标准化,可以帮助企业安装,配置,运行 hadoop 以达 到大规模企业数据的处理和分析。由 cloudera 公司开发的集群 web 管理工具 cloudera manager(简称 CM)和 CDH 目前在企业中使用的比重很大,掌握 CM+CDH 集群管理和使用 不仅简化了集群安。

第十阶段:Storm 实时数据处理

本部分学习过后,大家将全面掌握 Storn 内部机制和原理,通过大量项目实战,让大家拥有完整项目开发思路和架构设计,掌握从数据采集到实时计算到数据存储再到前台展示,所有工作一个人搞定!譬如可以一个人搞定淘宝双 11 大屏幕项目!不光从项目的开发的层次去实现,并可以从架构的层次站在架构师的角度去完成一个项目。

第十一阶段:Redis 缓存数据库

第十二阶段:Spark 核心部分:Spark Core

Spark 是当前最为流行的基于内存计算的分布式框架,在 Spark 的生态圈中的框架几乎 能够解决所有的大数据的应用场景,如果基于内存计算,计算速度比 Hadoop 生态圈中的 MapReduce 快 100 倍,如果是基于磁盘的计算,那么速度快 10 倍以上,所以 Spark 是当前 大数据开发人员必备的。

第十三阶段:机器学习

SparkMLlib 是 Spark 生态圈中做机器学习的算法库,常用的大部分的算法都封装到了 MLlib 机器学习库中,做机器学习的时候只需要调用函数,非常的方便,但是在讲 MLlib 之 前需要提前讲 R 语言作为基础

第十四阶段:机器学习:推荐系统项目

推荐系统是当前在机器学习领域非常火热的技术之一,本阶段会讲解当前最流行的推荐 系统的实现方案

第十五阶段:面试和成功求职的秘技

本阶段是求职面试的“淬火”阶段。前面的修行结束了,我们即将进入战场。如何更好、更快的适应求职面试?如何少走弯路,抓住每一个机会?本阶段都会有详细的讲解。面对求职的你,这是必看的内容!!!

第十六阶段:入职后快速成长到CTO

大家都担心就业问题,其实大家最后也都就业了。实际上,更多的人是被“职场温水煮青蛙杀死了”,失去了发展的冲劲和机会。如何在职场上走的更好?如何像那些大神一样,在短短几年就达到了CTO 的级别?本阶段给大家讲解这些疑惑,也真心希望大家按照老师传授的“职场软实力”理论往前走的更好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值