leetcode 每日一题 70. Climbing Stairs


虽然标记是动态规划。但是其实感觉大家都会用递归,但是递归会超时。

这时发现可以使用一维数组去做,比较简便好理解。


有n个台阶,每次走一步或者两步,问多少种方法走完。

用动态规划的想法去想,从n开始倒着数,发现可以使用n-1+1或者n-2+2这两种方式走完整个台阶。

因此n的次数=n-1台阶可能的走法+n-2台阶可能的走法


举个例子:

n=1时,1种走法

n=2时,2种走法,11和2

n=3时,3种走法,即111和12和21,也就是n=1种走法(最后再走一步2台阶) 与 n=2种走法(最后再走一步1台阶)的和


由此可得代码,

class Solution {
public:
    int climbStairs(int n) {
        int climb[10001]={0};
        if(n==0) return 0;
        for(int i=1;i<=n;i++){
            if(i==1) climb[i]=1;
            else if(i==2) climb[i]=2;
            else climb[i]=climb[i-1]+climb[i-2];
        }
        return climb[n];
    }
};


如果不用一维数组可能有些不好理解,

非递归的方式,其实此题类似于求斐波那契数列的和,但是递归不仅慢还可能溢出。下面采用非递归的方法,其中pre代表前n-1台阶的方法数,current代表第n台阶的方法数。

public int climbStairs(int n) {
    if (n == 0 || n == 1)
      return 1;
    int pre = 1;
    int current = 1;
    for (int i = 2; i <= n; i++) {
      int temp = current + pre;
      pre = current;
      current = temp;
    }
    return current;
  }

这种方法降低了空间复杂度,然而时间还是一样~


另外,动态分配数组的方法也可以借鉴,但是其实比较慢。

int *count=new int[n+1];




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值