leetcode 每日一题 172. Factorial Trailing Zeroes

典型的数学问题:

问题:N的阶乘(N!)中的末尾有多少个0?
     例如:N = 5,N! = 120.末尾有1个0.

分析:想到这个问题,有人可能第一反应就是现求出N!,然后再根据求出的结果,最后得出N!的末尾有多少个0。

其实可以考虑为,哪些数相乘可以得到10 这个角度,由于2*5为十,且分解后5的个数肯定小于2,所以在这个阶乘中10的幂M可以由1~N中有多少个5来决定

因此转换为求问题:1-N中有多少个5?


一开始用的笨方法是,从1~N中直接求每个数的5的指数,但是超时

    int trailingZeroes(int n) {
        int zero=0;
        long long int i,j;
        if(n<5) return 0;
        for(i=5;i<=n;i+=5){ //此处优化,i+=5
            j=i;            //j要替代i 不然i的值就变了
            while(j!=0){
                if(j%5==0){
                    zero++;
                }
                j=j/5;
            }
        }
        return zero;
    }
    //此方法超时

后来发现,求5的指数,肯定是5,25,125这些数,因此可以用这个公式来求:

Z = N/5 + N /(5*5) + N/(5*5*5).....知道N/(5的K次方)等于0

公式中 N/5表示不大于N的数中能被5整除的数贡献一个5,N/(5*5)表示不大于N的数中能被25整除的数再共享一个5

class Solution {
public:
    int trailingZeroes(int n) {
        int zero=0;
        while(n!=0){
            zero+=n/5;
            n=n/5;
        }
        return zero;
    }
};
更直观的代码在discuss中也有: https://leetcode.com/discuss/89805/sharing-my-4ms-c-solution

class Solution {
public:
    int trailingZeroes(int n) {
        int result=0;
        long long int i;
        for(i=5; i<=n; i=i*5)
            result += n/i;

        return result;
    }
};






  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值