矩阵分析题解

矩阵分析

ex1

(1)Solution:
数域 F F F上线性空间 V V V中,任何一个向量 α \alpha α都可由 n n n个线性无关向量 α 1 , α 2 , ⋯ , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1α2αn线性表出。
(2)Prof:
k 1 f 1 ( x ) + k 2 f 2 ( x ) + k 3 f 3 ( x ) + k 4 f 4 ( x ) = 0 k_1f_1(x)+k_2f_2(x)+k_3f_3(x)+k_4f_4(x)=0 k1f1(x)+k2f2(x)+k3f3(x)+k4f4(x)=0
( k 1 − k 2 + k 4 ) + ( k 1 + k 2 ) x + k 3 x 2 + k 4 x 3 = 0 (k_1-k_2+k_4)+(k_1+k_2)x+k_3x^2+k_4x^3=0 (k1k2+k4)+(k1+k2)x+k3x2+k4x3=0
k 1 = k 2 = k 3 = k 4 = 0 k_1=k_2=k_3=k_4=0 k1=k2=k3=k4=0
任意一个向量 f ( x ) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 ∈ R [ x ] 4 f(x)=a_0+a_1x+a_2x^2+a_3x^3\in R[x]_4 f(x)=a0+a1x+a2x2+a3x3R[x]4
f ( x ) = k 1 f 1 ( x ) + k 2 f 2 ( x ) + k 3 f 3 ( x ) + k 4 f 4 ( x ) f(x)=k_1f_1(x)+k_2f_2(x)+k_3f_3(x)+k_4f_4(x) f(x)=k1f1(x)+k2f2(x)+k3f3(x)+k4f4(x)
f ( x ) = ( k 1 − k 2 + k 4 ) + ( k 1 + k 2 ) x + k 3 x 2 + k 4 x 3 f(x)=(k_1-k_2+k_4)+(k_1+k_2)x+k_3x^2+k_4x^3 f(x)=(k1k2+k4)+(k1+k2)x+k3x2+k4x3
{ a 0 = k 1 − k 2 + k 4 a 1 = k 1 + k 2 a 2 = k 3 a 3 = k 4 \begin{cases} a_0=k_1-k_2+k_4\\ a_1=k_1+k_2\\ a_2=k_3\\ a_3=k_4 \end{cases} a0=k1k2+k4a1=k1+k2a2=k3a3=k4
{ k 1 = ( a 0 + a 1 − a 3 ) / 2 k 2 = ( − a 0 + a 1 + a 3 ) / 2 k 3 = a 2 k 4 = a 3 \begin{cases} k_1=(a_0+a_1-a_3)/2\\ k_2=(-a_0+a_1+a_3)/2\\ k_3=a_2\\ k_4=a_3 \end{cases} k1=(a0+a1a3)/2k2=(a0+a1+a3)/2k3=a2k4=a3
故任意向量 f ( x ) ∈ R [ x ] 4 f(x)\in R[x]_4 f(x)R[x]4都可由 f 1 , f 2 , f 3 , f 4 f_1,f_2,f_3,f_4 f1,f2,f3,f4线性表出
所以向量组 f 1 , f 2 , f 3 , f 4 f_1,f_2,f_3,f_4 f1,f2,f3,f4 R [ x ] 4 R[x]_4 R[x]4的一组基。
(3)Solution:
映射 A : V 1 → V 2 , \mathscr A:V _1\rightarrow V_2, A:V1V2如果对于任何两个向量 α 1 , α 2 ∈ V 1 \alpha_1,\alpha_2\in V_1 α1,α2V1和任何数 λ ∈ F , \lambda \in F, λF,都有
A ( α 1 + α 2 ) = A ( α 1 ) + A ( α 2 ) ; \mathscr A(\alpha_1+\alpha_2)=\mathscr A(\alpha_1)+\mathscr A(\alpha_2); A(α1+α2)=A(α1)+A(α2);
A ( λ α 1 ) = λ A ( α 1 ) \mathscr A(\lambda \alpha_1)=\lambda \mathscr A(\alpha_1) A(λα1)=λA(α1)
则映射 A \mathscr A A V 1 到 V 2 V_1到V_2 V1V2的线性映射。
(4)Prof:
显然,
A ( f 1 ( x ) + f 2 ( x ) ) = A ( f 1 ( x ) ) + A ( f 2 ( x ) ) \mathscr A(f_1(x)+f_2(x))=\mathscr A(f_1(x))+\mathscr A(f_2(x)) A(f1(x)+f2(x))=A(f1(x))+A(f2(x))
A ( λ f ( x ) ) = λ A ( f ( x ) ) \mathscr A(\lambda f(x))=\lambda \mathscr A(f(x)) A(λf(x))=λA(f(x))
A \mathscr A A 是线性映射。
(5)Solution:
α 1 , α 2 , ⋯ , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1α2αn V 1 V_1 V1的一组基, β 1 , β 2 , ⋯ , β m \beta_1,\beta_2,\cdots,\beta_m β1β2βm V 2 V_2 V2的一组基。 A 是 V 1 → V 2 的 一 个 线 性 映 射 \mathscr A是V _1\rightarrow V_2的一个线性映射 AV1V2线
A ( α 1 , α 2 , ⋯ , α n ) = ( β 1 , β 2 , ⋯ , β m ) A \mathscr A(\alpha_1,\alpha_2,\cdots,\alpha_n)=(\beta_1,\beta_2,\cdots,\beta_m)A A(α1α2αn)=(β1β2βm)A
则矩阵 A A A称为线性映射 A \mathscr A A在基 ( α 1 , α 2 , ⋯ , α n ) (\alpha_1,\alpha_2,\cdots,\alpha_n) (α1α2αn)与基 ( β 1 , β 2 , ⋯ , β m ) (\beta_1,\beta_2,\cdots,\beta_m) (β1β2βm)下的矩阵表示。
(6)Solution:
A ( f 1 , f 2 , f 3 ) \mathscr A(f_1,f_2,f_3) A(f1,f2,f3)
= ( A ( f 1 ) , A ( f 2 ) , A ( f 3 ) ) =(\mathscr A(f_1),\mathscr A(f_2),\mathscr A(f_3)) =(A(f1),A(f2),A(f3))
= ( 1 − 2 x − x 2 , 1 + 2 x − x 2 , 2 x − 2 / 3 x 3 ) =(1-2x-x^2,1+2x-x^2,2x-2/3x^3) =(12xx2,1+2xx2,2x2/3x3)
= ( x + 1 , x − 1 , x 2 , x 3 + 1 ) [ − 1 2 3 2 4 3 − 3 2 1 2 2 3 − 1 − 1 0 0 0 − 2 3 ] =(x+1,x-1,x^2,x^3+1) \begin{bmatrix} -\frac1{2}&\frac3{2}&\frac4{3}\\ -\frac3{2}&\frac1{2}&\frac2{3}\\ -1&-1&0\\ 0&0&-\frac2{3} \end{bmatrix} =(x+1,x1,x2,x3+1)2123102321103432032
A = [ − 1 2 3 2 4 3 − 3 2 1 2 2 3 − 1 − 1 0 0 0 − 2 3 ] A=\begin{bmatrix} -\frac1{2}&\frac3{2}&\frac4{3}\\ -\frac3{2}&\frac1{2}&\frac2{3}\\ -1&-1&0\\ 0&0&-\frac2{3} \end{bmatrix} A=2123102321103432032

ex2

(1)Solution:
非 奇 异 矩 阵 P , Q 使 得 B = Q A P − 1 , 非奇异矩阵P,Q使得B=QAP^{-1}, PQ使B=QAP1, B 与 A 等 价 B与A等价 BA
(2)Solution:
A = [ 1 0 − 1 2 1 1 2 0 1 0 − 1 0 1 ] A=\begin{bmatrix} 1&0&-1\\2&1&\frac1{2}\\0&1&0\\-1&0&1 \end{bmatrix} A=1201011012101
[ 1 0 0 0 − 2 1 0 0 2 − 1 1 0 1 0 0 1 ] [ 1 0 − 1 2 1 1 2 0 1 0 − 1 0 1 ] [ 1 0 − 2 5 0 1 1 0 0 − 2 5 ] = [ 1 0 0 0 1 0 0 0 1 0 0 0 ] \begin{bmatrix} 1&0&0&0\\-2&1&0&0\\2&-1&1&0\\1&0&0&1 \end{bmatrix} \begin{bmatrix} 1&0&-1\\2&1&\frac1{2}\\0&1&0\\-1&0&1 \end{bmatrix} \begin{bmatrix} 1&0&-\frac2{5}\\0&1&1\\0&0&-\frac2{5} \end{bmatrix}=\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1\\0&0&0 \end{bmatrix} 1221011000100001120101101210110001052152=100001000010
Q − 1 = [ 1 0 0 0 − 2 1 0 0 2 − 1 1 0 1 0 0 1 ] P = [ 1 0 − 2 5 0 1 1 0 0 − 2 5 ] Q^{-1}=\begin{bmatrix} 1&0&0&0\\-2&1&0&0\\2&-1&1&0\\1&0&0&1 \end{bmatrix} P=\begin{bmatrix} 1&0&-\frac2{5}\\0&1&1\\0&0&-\frac2{5} \end{bmatrix} Q1=1221011000100001P=10001052152
A = Q [ 1 0 0 0 1 0 0 0 1 0 0 0 ] P − 1 A=Q\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1\\0&0&0 \end{bmatrix}P^{-1} A=Q100001000010P1
y = A x = Q [ 1 0 0 0 1 0 0 0 1 0 0 0 ] P − 1 x y=Ax=Q\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1\\0&0&0 \end{bmatrix}P^{-1}x y=Ax=Q100001000010P1x
Q − 1 y = [ 1 0 0 0 1 0 0 0 1 0 0 0 ] P − 1 x Q^{-1}y=\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1\\0&0&0 \end{bmatrix}P^{-1}x Q1y=100001000010P1x
x = P x ~ , y = P y ~ x=P\widetilde x,y=P\widetilde y x=Px ,y=Py
y ~ = [ 1 0 0 0 1 0 0 0 1 0 0 0 ] x ~ \widetilde y=\begin{bmatrix} 1&0&0\\0&1&0\\0&0&1\\0&0&0 \end{bmatrix}\widetilde x y =100001000010x
y ~ 和 y ~ 是 解 耦 的 \widetilde y和\widetilde y是解耦的 y y
(3)Solution:
设 A 是 线 性 空 间 V 的 线 性 变 换 , W 是 V 的 子 空 间 , 如 果 任 意 向 量 α ∈ W 都 有 A ( α ) ∈ W , 则 成 W 是 α 的 不 变 子 空 间 。 设\mathscr A是线性空间V的线性变换,W是V的子空间,如果任意向量\alpha \in W都有\mathscr A(\alpha)\in W,则成W是\alpha 的不变子空间。 A线V线WVαWA(α)W,Wα
(4)Solution:
A 的 特 征 值 λ 1 = 1 2 , λ 2 = 3 2 A的特征值\lambda_1=\frac1{2},\lambda_2=\frac3{2} Aλ1=21,λ2=23
特 征 向 量 ξ 1 = ( 2 , 1 ) T , ξ 2 = ( 2 , − 1 ) T 特征向量\xi_1=(2,1)^T,\xi_2=(2,-1)^T ξ1=(2,1)T,ξ2=(2,1)T

ex3

(1)Solution:

  • A ( λ ) 的 全 部 k 阶 子 式 的 首 项 系 数 为 1 的 最 大 公 因 式 D k ( λ ) 称 为 A ( λ ) 的 k 阶 行 列 式 因 子 A(\lambda)的全部k阶子式的首项系数为1的最大公因式D_k(\lambda)称为A(\lambda)的k阶行列式因子 A(λ)k1Dk(λ)A(λ)k
  • A ( λ ) 的 k 阶 行 列 式 因 子 D k ( λ ) , 若 d k ( λ ) = D k ( λ ) D k − 1 ( λ ) , d k 称 为 A ( λ ) 的 不 变 因 子 A(\lambda)的k阶行列式因子D_k(\lambda),若d_k(\lambda)=\frac{D_k(\lambda)}{D_{k-1}(\lambda)},d_k称为A(\lambda)的不变因子 A(λ)kDk(λ),dk(λ)=Dk1(λ)Dk(λ),dkA(λ)
    (2)Solution:
    若存在多项式矩阵 V ( λ ) ∈ F n × n [ λ ] 使 得 U ( λ ) V ( λ ) = V ( λ ) U ( λ ) = I n , 则 矩 阵 U ( λ ) 称 为 单 位 模 阵 V(\lambda) \in F^{n\times n}[\lambda]使得U(\lambda)V(\lambda)=V(\lambda)U(\lambda)=I_n,则矩阵U(\lambda)称为单位模阵 V(λ)Fn×n[λ]使U(λ)V(λ)=V(λ)U(λ)=In,U(λ)
    (3)Solution:
    易得初等因子: λ , λ + 1 , λ , ( λ + 1 ) 2 \lambda,\lambda+1,\lambda,(\lambda+1)^2 λ,λ+1,λ,(λ+1)2
    { 1 , λ , λ } { 1 , λ + 1 , ( λ + 1 ) 2 } \{1,\lambda,\lambda\}\{1,\lambda+1,(\lambda+1)^2\} {1,λ,λ}{1,λ+1,(λ+1)2}
    则不变因子: 1 , λ ( λ + 1 ) , λ ( λ + 1 ) 2 1,\lambda(\lambda+1),\lambda(\lambda+1)^2 1,λ(λ+1),λ(λ+1)2
    所以 λ \lambda λ的Smith标准型是:
    [ 1 λ ( λ + 1 ) λ ( λ + 1 ) 2 ] \begin{bmatrix} 1&&\\ &\lambda(\lambda+1)&\\ &&\lambda(\lambda+1)^2 \end{bmatrix} 1λ(λ+1)λ(λ+1)2

ex4

(1)Solution:
非 奇 异 矩 阵 P , 使 得 P − 1 A P = B , 则 A , B 相 似 。 非奇异矩阵P,使得P^{-1}AP=B,则A,B相似。 P使P1AP=B,AB
(2)Solution:

  • λ I − A 与 λ I − B 作 为 多 项 式 矩 阵 有 相 同 的 S m i t h 标 准 型 \lambda I-A与\lambda I -B 作为多项式矩阵有相同的Smith标准型 λIAλIBSmith
  • λ I − A 与 λ I − B 作 为 多 项 式 矩 阵 有 相 同 的 各 阶 行 列 式 因 子 \lambda I-A与\lambda I -B 作为多项式矩阵有相同的各阶行列式因子 λIAλIB
  • λ I − A 与 λ I − B 作 为 多 项 式 矩 阵 有 相 同 的 不 变 因 子 \lambda I-A与\lambda I -B 作为多项式矩阵有相同的不变因子 λIAλIB
  • λ I − A 与 λ I − B 作 为 多 项 式 矩 阵 有 相 同 的 初 等 因 子 组 \lambda I-A与\lambda I -B 作为多项式矩阵有相同的初等因子组 λIAλIB
    (3)Solution:
    λ I − A = [ λ − 1 0 0 − 2 λ − 1 0 − 3 − 2 λ − 1 ] → [ 1 1 ( λ − 1 ) 3 ] \lambda I-A=\begin{bmatrix} \lambda-1&0&0\\ -2&\lambda-1&0\\ -3&-2&\lambda-1\end{bmatrix}\rightarrow\begin{bmatrix} 1&&\\ &1&\\ &&(\lambda-1)^3\end{bmatrix} λIA=λ1230λ1200λ111(λ1)3
    所以Jordan标准型,
    [ 1 1 1 1 1 ] \begin{bmatrix} 1&1&\\ &1&1\\ &&1\end{bmatrix} 11111

ex5

(1)Solution:
对V中的任意两个向量 α 、 β \alpha、\beta αβ依一确定法则对应着一个实数,这个实数称为内积。
(2)Solution:
G ( α 1 , α 2 , ⋯ &ThinSpace; , α s ) = [ &lt; α i , α j &gt; ] s × s 称 为 向 量 组 α 1 , α 2 , ⋯ &ThinSpace; , α s 的 G r a m 矩 阵 G(\alpha_1,\alpha_2,\cdots,\alpha_s)=[&lt;\alpha_i,\alpha_j&gt;]_{s\times s}称为向量组\alpha_1,\alpha_2,\cdots,\alpha_s的Gram矩阵 G(α1,α2,,αs)=[<αi,αj>]s×sα1,α2,,αsGram
(3)Solution:
∣ &lt; α , β &gt; ∣ ≤ ∣ ∣ α ∣ ∣ ⋅ ∣ ∣ β ∣ ∣ |&lt;\alpha,\beta&gt;|\le||\alpha||\cdot||\beta|| <α,β>αβ
prof:
∣ &lt; α , β &gt; ∣ ≤ ∣ ∣ α ∣ ∣ ⋅ ∣ ∣ β ∣ ∣ ⇔ ( 2 &lt; α , β &gt; ) 2 ≤ 4 &lt; α , α &gt; ⋅ &lt; β , β &gt; |&lt;\alpha,\beta&gt;|\le||\alpha||\cdot||\beta||\Leftrightarrow(2&lt;\alpha,\beta&gt;)^2\le4&lt;\alpha,\alpha&gt;\cdot&lt;\beta,\beta&gt; <α,β>αβ(2<α,β>)24<α,α><β,β>
⇔ ( 2 &lt; α , β &gt; ) 2 ≤ ( &lt; α , α &gt; + &lt; β , β &gt; ) 2 \Leftrightarrow (2&lt;\alpha,\beta&gt;)^2\le(&lt;\alpha,\alpha&gt;+&lt;\beta,\beta&gt;)^2 (2<α,β>)2(<α,α>+<β,β>)2
⇔ ( &lt; α , α &gt; − 2 &lt; α , β &gt; + &lt; β , β &gt; ) ≥ 0 \Leftrightarrow(&lt;\alpha,\alpha&gt;-2&lt;\alpha,\beta&gt;+&lt;\beta,\beta&gt;) \ge0 (<α,α>2<α,β>+<β,β>)0
⇔ ( &lt; α , α &gt; − &lt; α , β &gt; + &lt; β , β &gt; − &lt; β , α &gt; ) ≥ 0 \Leftrightarrow(&lt;\alpha,\alpha&gt;-&lt;\alpha,\beta&gt;+&lt;\beta,\beta&gt;-&lt;\beta,\alpha&gt;) \ge0 (<α,α><α,β>+<β,β><β,α>)0
⇔ ( &lt; α , α − β &gt; + &lt; β , β − α &gt; ) ≥ 0 \Leftrightarrow(&lt;\alpha,\alpha-\beta&gt;+&lt;\beta,\beta-\alpha&gt;) \ge0 (<α,αβ>+<β,βα>)0
⇔ ( &lt; α − β , α − β &gt; ) ≥ 0 \Leftrightarrow(&lt;\alpha-\beta,\alpha-\beta&gt;) \ge0 (<αβ,αβ>)0
显然成立,证毕。

ex6

(1)Solution:
A 列 满 秩 , 存 在 唯 一 的 一 对 矩 阵 Q , R 满 足 : A 列满秩,存在唯一的一对矩阵Q,R满足: AQR

  1. A = Q R A=QR A=QR
  2. Q H Q = I r Q^HQ=I_r QHQ=Ir
  3. R 是 对 角 元 素 为 正 实 数 的 上 三 角 矩 阵 R是对角元素为正实数的上三角矩阵 R

(2)Solution:
v 1 = ( 1 10 , 3 10 ) T , v 2 = ( 3 10 , − 1 10 ) T v_1=(\frac 1{\sqrt {10}},\frac 3{\sqrt {10}})^T,v_2=(\frac 3{\sqrt {10}},\frac {-1}{\sqrt {10}})^T v1=(10 1,10 3)T,v2=(10 3,10 1)T
U = ( v 1 , v 2 ) U=(v_1,v_2) U=(v1,v2)
R = U H A = [ 10 5 10 0 5 10 ] R=U^HA=\begin{bmatrix}\sqrt {10}&amp;\frac5{\sqrt{10}}\\0&amp;\frac5{\sqrt {10}}\end{bmatrix} R=UHA=[10 010 510 5]
A = U R = [ 1 10 3 10 3 10 − 1 10 ] [ 10 5 10 0 5 10 ] A=UR=\begin{bmatrix}\frac 1{\sqrt {10}}&amp;\frac 3{\sqrt {10}}\\\frac 3{\sqrt {10}}&amp;\frac {-1}{\sqrt {10}}\end{bmatrix}\begin{bmatrix}\sqrt {10}&amp;\frac5{\sqrt{10}}\\0&amp;\frac5{\sqrt {10}}\end{bmatrix} A=UR=[10 110 310 310 1][10 010 510 5]

ex7

(1)Solution:
A A H = A H A , 则 A 是 正 规 矩 阵 AA^H=A^HA,则A是正规矩阵 AAH=AHA,A
(2)Solution:
当 且 仅 当 A 是 正 规 矩 阵 , A 可 酉 相 似 对 角 化 。 当且仅当A是正规矩阵,A可酉相似对角化。 AA
(3)Prof:
A H = A , 则 λ ‾ i = λ i , 即 λ i 为 实 数 A^H=A,则\overline \lambda_i=\lambda_i,即\lambda_i为实数 AH=A,λi=λi,λi

ex8

(1)Solution:
存 在 m 阶 酉 矩 阵 U 和 n 阶 酉 矩 阵 V , 使 得 存在m阶酉矩阵U和n阶酉矩阵V,使得 mUnV使
U H A V = [ ∑ r 0 r × ( n − r ) 0 ( m − r ) × r 0 ( m − r ) × ( n − r ) ] U^HAV=\begin{bmatrix}\sum_r&amp;0_{r\times(n-r)}\\ 0_{(m-r)}\times r&amp;0_{(m-r)\times(n-r)}\end{bmatrix} UHAV=[r0(mr)×r0r×(nr)0(mr)×(nr)]
∑ r = [ σ 1 ⋱ σ r ] , σ i &gt; 0 ( i = 1 , 2 , ⋯ &ThinSpace; , r ) \sum_r=\begin{bmatrix}\sigma_1&amp;&amp;\\ &amp;\ddots&amp;\\ &amp;&amp;\sigma_r\end{bmatrix},\sigma_i\gt0(i=1,2,\cdots,r) r=σ1σr,σi>0(i=1,2,,r)
(2)Solution:
A T A = [ 2 − 1 − 1 1 ] , λ 1 = 3 + 5 2 , λ 2 = 3 − 5 2 A^TA=\begin{bmatrix}2&amp;-1\\-1&amp;1\end{bmatrix},\lambda_1=\frac{3+\sqrt 5}{2},\lambda_2=\frac{3-\sqrt 5}{2} ATA=[2111],λ1=23+5 ,λ2=235
A = U ∑ V H , ∑ = [ 3 + 5 2 3 − 5 2 ] A=U\sum V^H,\sum=\begin{bmatrix}\sqrt \frac{3+\sqrt 5}{2}&amp;\\&amp;\sqrt \frac{3-\sqrt 5}{2}\end{bmatrix} A=UVH,=23+5 235
∣ ∣ S ∣ ∣ 2 = ∣ ∣ A − 1 y ∣ ∣ 2 = ∣ ∣ ( U ∑ V H ) − 1 y ∣ ∣ 2 = ∣ ∣ V ∑ − 1 ( U H y ) ∣ ∣ 2 = ∣ ∣ ∑ − 1 y ~ ∣ ∣ 2 ||S||^2=||A^{-1}y||^2=||(U\sum V^H)^{-1}y||^2=||V\sum^{-1}(U^Hy)||^2=||\sum^{-1}\widetilde y||^2 S2=A1y2=(UVH)1y2=V1(UHy)2=1y 2
= ∣ y 1 ∣ 2 σ 1 2 + ∣ y 2 ∣ 2 σ 2 2 = 1 , 其 中 y ~ = U H y =\frac {|y_1|^2}{\sigma_1^2}+\frac {|y_2|^2}{\sigma_2^2}=1,其中\widetilde y=U^Hy =σ12y12+σ22y22=1,y =UHy
所以单位圆周S在映射A下的像A(S)是椭圆。
长半轴: 3 + 5 2 \sqrt \frac{3+\sqrt 5}{2} 23+5
短半轴: 3 − 5 2 \sqrt \frac{3-\sqrt 5}{2} 235

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值