方形矩阵旋转(48)题解

这篇博客探讨了如何在不使用额外内存空间的情况下,原地旋转一个N×N的正方形矩阵90度。提供了三种不同的算法实现,包括直接交换、逐元素调整和结合水平与对角线翻转的方法,所有方法的时间复杂度均为O(n²),空间复杂度为O(1)。通过这些算法,可以高效地完成矩阵的旋转操作。
摘要由CSDN通过智能技术生成

题目

给你一幅由 N × N 矩阵表示的图像,其中每个像素的大小为 4 字节。请你设计一种算法,将图像旋转 90 度。

不占用额外内存空间能否做到?

示例 1:

给定 matrix = 
[
  [1,2,3],
  [4,5,6],
  [7,8,9]
],

原地旋转输入矩阵,使其变为:
[
  [7,4,1],
  [8,5,2],
  [9,6,3]
]

示例 2:

给定 matrix =
[
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
], 

原地旋转输入矩阵,使其变为:
[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]

分析

给出的矩阵形状是个N x N的正方形矩阵,所以他的宽高是已知的N,要求旋转90度,那横向排列的数组就变为了竖向排列,填充方式也要变成倒序填充

如图:

在这里插入图片描述

转换完来看就是横向下标变为倒序的竖向下标了 ,算式: 横向index = 竖向N-1-index

代码

如果允许使用一个空矩阵接受就非常简单,时间复杂度:O(n²) 空间复杂度:O(2n)

    public void rotate(int[][] matrix) {
        int[][] result = new int[matrix.length][matrix.length];
        for (int i = 0; i < matrix.length; i++) {
            int now[] = matrix[i];
            // 计算旋转后下标
            int index = matrix.length-1-i;
            for (int j = 0; j < now.length; j++) {
                result[j][index] = now[j];
            }
        }
    }

题目还要求尝试不适应额外空间,所以就不能用临时矩阵,需要再给定的矩阵内旋转,也就是原地旋转;时间复杂度:O(n²) 空间复杂度:O(1)

在原地旋转的话会覆盖一部分值,所以也需要存储被覆盖的值,如果按上面的直接一行进行覆盖调整那产生的覆盖值太多 ,所以要一个一个值进行调整到正确的位置。从每行第一位开始调整。

在这里插入图片描述

代码如下:

    public void rotate(int[][] matrix) {
        int length = matrix.length;
        for (int i = 0; i < matrix.length/2; i++) {
            for (int j = i; j < matrix.length - (i + 1); j++) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[length - j-1][i];
                matrix[length - j -1][i] = matrix[length-i-1][length-j-1];
                matrix[length-i-1][length-j-1] = matrix[j][length-i-1];
                matrix[j][length-i-1] = temp;
            }
        }
    }

还有一种方式,正方形旋转90° = 正方形水平反转 + 对角线反转;时间复杂度:O(n²) 空间复杂度:O(1)

在这里插入图片描述

代码如下:

    public void rotate(int[][] matrix) {
        int n = matrix.length;
        // 水平翻转
        for (int i = 0; i < n / 2; ++i) {
            for (int j = 0; j < n; ++j) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[n - i - 1][j];
                matrix[n - i - 1][j] = temp;
            }
        }
        // 主对角线翻转
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = temp;
            }
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余生大大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值