设
文
法
G
[
S
]
为
:
S
→
A
S
∣
ε
A
→
a
A
∣
b
证
明
G
[
S
]
是
L
R
(
1
)
文
法
,
并
给
出
相
应
的
L
R
(
1
)
分
析
表
设文法G[S]为:\\ S → AS | ε\\ A →aA | b \\ 证明G[S]是LR(1)文法,并给出相应的LR(1)分析表
设文法G[S]为:S→AS∣εA→aA∣b证明G[S]是LR(1)文法,并给出相应的LR(1)分析表
需要特别注意S →ε 这一产生式