opencv课程学习

这篇博客详细介绍了OpenCV在图像处理中的应用,包括掩膜定义、对比度增强、像素范围处理、错误检查、读写像素、修改像素值、图像类型转化、线性混合操作、矩阵操作、寻找最小值最大值位置、腐蚀膨胀、上采样和降采样、滤波器、拉普拉斯算子、Canny算子和图像直方图均衡化。同时提供了相关资源链接以供深入学习。
摘要由CSDN通过智能技术生成

1.掩膜定义、filter2D函数实现对比度增强

 Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
 filter2D(src, dst, src.depth(), kernel);

2.像素范围处理:这个函数的功能是确保RGB值得范围在0~255之间

saturate_cast<uchar>(-100),返回 0。
saturate_cast<uchar>(288),返回255
saturate_cast<uchar>(100),返回100

3.CV_Assert():若括号中的表达式值为false,则返回一个错误信息

CV_Assert(myImage.depth() == CV_8U); 

4.读写像素

读一个GRAY像素点的像素值(CV_8UC1)
Scalar intensity = img.at<uchar>(y, x); 
或者 Scalar intensity = img.at<uchar>(Point(x, y));

读一个RGB像素点的像素值
Vec3f intensity = img.at<Vec3f>(y, x); 
float blue = intensity.val[0]; 
float gre
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值