Chris Kang
码龄7年
关注
提问 私信
  • 博客:369,858
    369,858
    总访问量
  • 91
    原创
  • 2,160,443
    排名
  • 65
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-03-04
博客简介:

Mr. Stone's Blog

查看详细资料
个人成就
  • 获得233次点赞
  • 内容获得48次评论
  • 获得904次收藏
  • 代码片获得918次分享
创作历程
  • 56篇
    2020年
  • 62篇
    2019年
  • 6篇
    2018年
成就勋章
TA的专栏
  • 算法与数据结构 · 栈
    4篇
  • 数字图像处理
    10篇
  • OpenCV
    19篇
  • CVUI
    18篇
  • Windows
    1篇
  • Pandas
    1篇
  • Development Tool
  • Visual Studio
    4篇
  • Jupyter Notebook
    1篇
  • Spyder
  • Git
    15篇
  • Anaconda
    1篇
  • 编程总览
    2篇
  • C
    1篇
  • C++
    13篇
  • 《C++ Primer Plus》笔记
    2篇
  • Python
    2篇
  • TensorFlow
    2篇
  • 数据结构
  • Excel
    2篇
  • 机器学习
    2篇
  • 机器学习数据集
    1篇
  • 计算机网络
    2篇
  • Python网络爬虫
    2篇
  • CSDN使用
    2篇
  • Linux
    15篇
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理pytorch图像处理nlp数据分析
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

LeetCode 【栈】 1047. 删除字符串中的所有相邻重复项 (简单)

给出由小写字母组成的字符串 S,重复项删除操作会选择两个相邻且相同的字母,并删除它们。在 S 上反复执行重复项删除操作,直到无法继续删除。在完成所有重复项删除操作后返回最终的字符串。答案保证唯一。示例:输入:“abbaca”输出:“ca”解释:例如,在 “abbaca” 中,我们可以删除 “bb” 由于两字母相邻且相同,这是此时唯一可以执行删除操作的重复项。之后我们得到字符串 “aaca”,其中又只有 “aa” 可以执行重复项删除操作,所以最后的字符串为 “ca”。提示:1 <= S
原创
发布博客 2020.09.06 ·
892 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

LeetCode 【栈】面试题 03.04. 化栈为队 (简单)

算法小白开始刷题,本文包含了自己的思考过程,所以内容可能比较冗余,如需思路,可直接看文章后面的 优化解法。题目链接:https://leetcode-cn.com/problems/implement-queue-using-stacks-lcci/题目实现一个MyQueue类,该类用两个栈来实现一个队列。示例:MyQueue queue = new MyQueue();queue.push(1);queue.push(2);queue.peek(); // 返回 1queue.po
原创
发布博客 2020.08.07 ·
307 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LeetCode 【栈】剑指 Offer 09. 用两个栈实现队列 (简单)

算法小白开始刷题,本文包含了自己的思考过程,所以内容可能比较冗余,如需思路,可直接看文章后面的 优化解法。题目链接:https://leetcode-cn.com/problems/yong-liang-ge-zhan-shi-xian-dui-lie-lcof/题目用两个栈实现一个队列。队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能。(若队列中没有元素,deleteHead 操作返回 -1 )示例 1:输
原创
发布博客 2020.08.03 ·
268 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LeetCode 【栈】 1021. 删除最外层的括号(简单)

题目链接:https://leetcode-cn.com/problems/remove-outermost-parentheses/题目有效括号字符串为空 ("")、"(" + A + “)” 或 A + B,其中 A 和 B 都是有效的括号字符串,+ 代表字符串的连接。例如,"","()","(())()" 和 “(()(()))” 都是有效的括号字符串。如果有效字符串 S 非空
原创
发布博客 2020.07.28 ·
193 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

《数字图像处理(第三版)》 第三章 数字图像处理 笔记5 (直方图处理 - 局部直方图处理)

第 3 章 灰度变换与空间滤波3.3 直方图处理3.3.3 局部直方图处理直方图均衡 和 直方图匹配 都是全局性的。虽然这种全局方法适用于整个图像的增强,但有时对图像小区域细节的局部增强也可以使用直方图处理。局部增强 的解决方法就是在图像中每一个像素的邻域中,根据灰度级分布(或其他特性)设置变换函数。直方图处理技术很容易适应局部增强,该过程定义一个方形或矩形的邻域并把该区域的中心从一个像素移至另一个像素。在每一个位置的邻域中,该点的直方图都要被计算,并且得到的不是直方图均衡化就是规定化变换函数。
原创
发布博客 2020.07.16 ·
1026 阅读 ·
1 点赞 ·
1 评论 ·
5 收藏

《数字图像处理(第三版)》 第三章 数字图像处理 笔记4 (直方图处理 - 直方图匹配)

第 3 章 灰度变换与空间滤波3.3 直方图处理3.3.2 直方图匹配(规定化)直方图均衡能自动地确定变换函数,该函数寻求产生有均匀直方图的输出图像,需要自动增强时,这是一个好方法。但是在某些情况下,采用均匀直方图的基本增强并不是最好的方法。有时我们希望处理后的图像具有规定的直方图形状可能更有用,这种用于产生处理后有特殊直方图的方法称为 直方图匹配 或 直方图规定化。设连续灰度 rrr 和 zzz (视为连续随机变量),并令 pr(r)p_r(r)pr​(r) 和 pz(z)p_z(z)pz​(
原创
发布博客 2020.07.12 ·
1809 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

9. 改变图像的对比度和亮度(OpenCV 官方文档翻译)

官方文档链接:https://docs.opencv.org/4.2.0/d3/dc1/tutorial_basic_linear_transform.html目标 (Goal)本教程学习:访问像素值用 0 初始化矩阵cv::saturate_cast 的作用有关像素转换的信息提高图像亮度的实例研究理论 (Theory)注意 (Note)下面的理论解释来自 Richard Szeliski 的 《计算机视觉:算法与应用》 一书。 图像处理 (Image Processing)
原创
发布博客 2020.05.10 ·
686 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

8. 使用OpenCV添加(混合)两个图像(OpenCV 官方文档翻译)

官方文档链接:https://docs.opencv.org/4.2.0/d5/dc4/tutorial_adding_images.html目标 (Goal)线性混合使用 cv::addWeighted() 添加两个图像理论 (Theory)注意下面的解释来自 Richard Szeliski 的 《计算机视觉:算法与应用》 一书。从之前的教程中,已经知道了一些像素操作符。下...
原创
发布博客 2020.05.07 ·
272 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

7. 图像操作(OpenCV 官方文档翻译)

官方文档链接:https://docs.opencv.org/4.2.0/d5/d98/tutorial_mat_operations.html输入 / 输出 (Input / Output)图像 (Images)从文件中加载图像: cv::Mat img = cv::imread(filename);如果读取的是一个 jpg 文件,则默认情况下会创建一个 3 通道图像。如果需...
原创
发布博客 2020.05.06 ·
370 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

6. OpenCV 4.2.0 图像矩阵的掩膜运算(OpenCV 官方文档翻译)

官方文档链接:https://docs.opencv.org/4.2.0/d7/d37/tutorial_mat_mask_operations.html矩阵上的掩膜操作非常简单。目的是根据 掩膜矩阵(也成为 核)重新计算图像中每个像素的值。此掩膜矩阵中的值代表着相邻像素(和当前像素)对新像素值得影响程度。从数学的角度看,即是我们用指定的值作加权平均。测试用例 (Our test case...
原创
发布博客 2020.05.05 ·
443 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

5. OpenCV 4.2.0 使用 OpenCV 扫描图像、查找表和时间测量(OpenCV 官方文档翻译)

官方文档链接:https://docs.opencv.org/4.2.0/db/da5/tutorial_how_to_scan_images.html目标 (Goal)如何遍历图像的每个像素?OpenCV 矩阵值是如何存储的?如何衡量算法的性能?什么是查找表?为什么要使用它们?测试用例 (Our test case)为了实现简单的颜色还原方法,可以通过使用 uchar 的 ...
原创
发布博客 2020.05.03 ·
549 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

《数字图像处理(第三版)》 第三章 数字图像处理 笔记3 (直方图处理 - 直方图均衡)

第 3 章 灰度变换与空间滤波3.3 直方图处理  直方图是多种空间域处理技术的基础。  灰度级范围为 [0, L-1] 的数字图像的直方图是离散函数h(rk)=nkh(r_k) = n_kh(rk​)=nk​这里 rk 是第 k 级灰度,nk 是图像中灰度级为 rk 的像素个数。经常以图像中像素的总数(用 n 表示)来除它的每一个值得到归一化的直方图。因此,一个归一化的直方图由...
原创
发布博客 2020.04.29 ·
3518 阅读 ·
4 点赞 ·
0 评论 ·
14 收藏

4. OpenCV 4.2.0 Mat - 基本图像容器(OpenCV 官方文档翻译)

官方文档链接:https://docs.opencv.org/4.2.0/d6/d6d/tutorial_mat_the_basic_image_container.html目标 (Goal)我们有多种方式可以从现实世界中获取数字图像:数字照相机,扫描仪,计算机断层扫描和磁共振成像等等。在任何情况下,我们看到的都是图像。然而,当我们将其转换为数字设备时,我们记录的是图像中每个点的数值。例...
原创
发布博客 2020.04.29 ·
696 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

19. CVUI 2.7.0 鼠标和 OpenCV 窗口:Multiple OpenCV windows 【有问题 未解决】(官方文档翻译)

官网文档链接:https://dovyski.github.io/cvui/advanced-multiple-windows/多 OpenCV 窗口 (Multiple OpenCV windows)如果项目使用了多个 OpenCV 窗口,例如,显示中间结果,而且那些窗口有 cvui 组件,用户需要执行一些额外的步骤来确保 UI 组件正常工作。以下部分展示了如何在多个窗口中使用 cvui ...
原创
发布博客 2020.04.24 ·
448 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

18. CVUI 2.7.0 鼠标和 OpenCV 窗口:Mouse(官方文档翻译)

官方文档链接:https://dovyski.github.io/cvui/advanced-mouse/Mousecvui 拥有自己的鼠标 API 可以追踪鼠标点击和光标位置。与鼠标相关的所有内容都可以从 cvui::mouse() 中访问到。以下部分将详细介绍所有可用的鼠标信息。光标位置(Cursor position)用户可以通过调用 cvui::mouse() 随时查询鼠标光标...
原创
发布博客 2020.04.23 ·
795 阅读 ·
0 点赞 ·
0 评论 ·
10 收藏

17. CVUI 2.7.0 鼠标和 OpenCV 窗口:介绍(官方文档翻译)

官方文档链接:https://dovyski.github.io/cvui/advanced-introduction/鼠标和 OpenCV 窗口 (Mouse and OpenCV windows)有些应用程序需要复杂的 UI 交互,包括使用鼠标光标或多个 OpenCV 窗口。在使用多个 OpenCV 窗口(包含着 cvui 组件)或 cvui 的鼠标 API 时,唯一需要考虑的是必须指...
原创
发布博客 2020.04.22 ·
314 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

16. CVUI 2.7.0 行和列:行列嵌套(官方文档翻译)

官方文档链接:https://dovyski.github.io/cvui/layout-nesting/行列嵌套 (Nesting rows and columns)row/column 可以相互嵌套来创建更复杂的布局,而不需要单独定位组件。当一列或一行嵌套在另一列或另一行中时,它的行为类似于普通的组件:如果需要,用户不需要指明渲染它的帧或它的 (x, y) 坐标,只需要指明它的宽度和高...
原创
发布博客 2020.04.22 ·
289 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

15. CVUI 2.7.0 行和列:Rows and Columns(官方文档翻译)

官方文档链接:https://dovyski.github.io/cvui/layout-introduction/Rows and Columns 简介在构建 UI 时,最麻烦的任务之一时计算每个组件在屏幕上的位置。cvui 有一组抽象该进程的方法,因此不必考虑 (x, y) 的坐标。相反,你只需要创建 rows/columns ,cvui 将为用户安排组件。使用 beginRow() ...
原创
发布博客 2020.04.19 ·
794 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

《数字图像处理(第三版)》 第三章 数字图像处理 笔记2 (基本的灰度变换函数)

第 3 章 灰度变换与空间滤波3.2 一些基本的灰度变换函数  灰度变换是所有图像处理技术中最简单的技术,涉及s=T(r)s = T(r)s=T(r)其中 T 是把像素值 r 映射到像素值 s 的一种变换。  由于处理的是数字量,变换函数的值通常存储在一个一维阵列中,并且从 r 到 s 的映射通过查表得到。对于 8 比特环境,一个包含 T 值的可查阅的表需要有 256 个记录。...
原创
发布博客 2020.04.19 ·
9661 阅读 ·
4 点赞 ·
0 评论 ·
17 收藏

《数字图像处理(第三版)》 第三章 数字图像处理 笔记1 (灰度变换和空间滤波基础)

第 3 章 灰度变换与空间滤波引言  术语 空间域 指图像平面本身,这类图像处理方法直接操作图像中的像素。变换域 的图像处理首先把一幅图像变换到变换域,在变换域中进行处理,然后通过反变换把处理结果返回到空间域。  空间域处理主要分为 灰度变换 和 空间滤波 两类。  灰度变换 对图像的单个像素进行操作,主要以 对比度 和 阈值处理 为目的。  空间滤波 涉及改善性能的操作,如通过图像中...
原创
发布博客 2020.04.14 ·
1025 阅读 ·
0 点赞 ·
0 评论 ·
9 收藏
加载更多