858. Prim算法求最小生成树

给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。

由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。

输入格式
第一行包含两个整数n和m。

接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过10000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6


适用于:图中可能存在重边和自环,边权可能为负数。求最小生成树
朴素想法:
每次找到距离集合最短的点,用它更新剩下所有点到集合的距离
做法:

  1. 循环n次,保证能够将所有结点收到集合内,一次操作一个结点
  2. 循环所有的结点,找到没在集合内,且距离集合最小的点
  3. 用该点更新剩下不在集合内的所有点
  4. 重复2 、3步,直到所有点均在集合内

代码

/*
S:当前已经在联通块中的所有点的集合
1. dist[i] = inf
2. for n 次
    t<-S外离S最近的点
    利用t更新S外点到S的距离
    st[t] = true
n次迭代之后所有点都已加入到S中
联系:Dijkstra算法是更新到起始点的距离,Prim是更新到集合S的距离
*/
#include <iostream>
#include <cstring>
using namespace std;
const int N = 510, INF = 0x3f3f3f3f;

int n, m;
int g[N][N], dist[N];
//邻接矩阵存储所有边
//dist存储其他点到S的距离
bool st[N];

int prim() {
    //如果图不连通返回INF, 否则返回res
    memset(dist, INF, sizeof dist);
    int res = 0;

    for(int i = 0; i < n; i++) {
        int t = -1;
        for(int j = 1; j <= n; j++) 
            if(!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        //寻找离集合S最近的点        
        if(i && dist[t] == INF) return INF;
        //判断是否连通,有无最小生成树

        if(i) res += dist[t];
        //cout << i << ' ' << res << endl;
        st[t] = true;
        //更新最新S的权值和

        for(int j = 1; j <= n; j++) dist[j] = min(dist[j], g[t][j]);
    }

    return res;
}

int main() {
    cin >> n >> m;
    int u, v, w;

    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
            if(i ==j) g[i][j] = 0;
            else g[i][j] = INF;

    while(m--) {
        cin >> u >> v >> w;
        g[u][v] = g[v][u] = min(g[u][v], w);
    }
    int t = prim();
    //临时存储防止执行两次函数导致最后仅返回0
    if(t == INF) puts("impossible");
    else cout << t << endl;
}
 

堆优化

#include<iostream>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;

const int M=510,N=1e5+10;
typedef pair<int,int> PII;

int n,m;
int cnt,d[M];

int e[2*N],ne[2*N],h[2*N],w[2*N],idx;    //必须开两倍的边数组,因为无向图需要有双向的边!!!!!!

bool st[N];

void add(int a,int b,int c){
    
    //先找一波重边,取最小值,解决重边问题
    for(int i=h[a];i!=-1;i=ne[i]){
        int j=e[i];
        if(j==b){
            w[i]=min(c,w[i]);
            return ;
        }
    }
    //如果没有重边就加入
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

int prim(){
    
    memset(d,0x3f,sizeof d);
    //先找到最小的值
    priority_queue<PII,vector<PII>,greater<PII>> q;
    d[1]=0;
    q.push({0,1});
    
    int res=0,cnt=0;
    
    while(!q.empty() && cnt<n){
        auto t = q.top();
        q.pop();
        int u = t.second,distance = t.first;
        if(st[u]) continue;   //如果已经在集合内,则直接跳过
        res+=distance;   //加上这条路径
        cnt++;			//集合内结点+1
        st[u]=true;		//将结点放进集合内
            
        for(int i=h[u];i!=-1;i=ne[i]){
            int j=e[i];
            if(d[j]>w[i]){   //使用的放入集合的点到后续点的距离更新 后续点到集合的距离
                d[j]=w[i];
                q.push({d[j],j});
            }
        }
    }
    if(cnt == n) return res;
    return -1;
    
}




int main(){
    
    cin>>n>>m;
    memset(h,-1,sizeof h);  //记得初始化,循环后续点的判断条件
    while(m--){
        int u,v,w;
        cin>>u>>v>>w;
        add(u,v,w);   //无向图
        add(v,u,w);
    }
    
    int res=prim();
    if(res==-1) cout<<"impossible";
    else cout<<res;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值