给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。
由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。
输入格式
第一行包含两个整数n和m。
接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
适用于:图中可能存在重边和自环,边权可能为负数。求最小生成树
朴素想法:
每次找到距离集合最短的点,用它更新剩下所有点到集合的距离
做法:
- 循环n次,保证能够将所有结点收到集合内,一次操作一个结点
- 循环所有的结点,找到没在集合内,且距离集合最小的点
- 用该点更新剩下不在集合内的所有点
- 重复2 、3步,直到所有点均在集合内
代码
/*
S:当前已经在联通块中的所有点的集合
1. dist[i] = inf
2. for n 次
t<-S外离S最近的点
利用t更新S外点到S的距离
st[t] = true
n次迭代之后所有点都已加入到S中
联系:Dijkstra算法是更新到起始点的距离,Prim是更新到集合S的距离
*/
#include <iostream>
#include <cstring>
using namespace std;
const int N = 510, INF = 0x3f3f3f3f;
int n, m;
int g[N][N], dist[N];
//邻接矩阵存储所有边
//dist存储其他点到S的距离
bool st[N];
int prim() {
//如果图不连通返回INF, 否则返回res
memset(dist, INF, sizeof dist);
int res = 0;
for(int i = 0; i < n; i++) {
int t = -1;
for(int j = 1; j <= n; j++)
if(!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
//寻找离集合S最近的点
if(i && dist[t] == INF) return INF;
//判断是否连通,有无最小生成树
if(i) res += dist[t];
//cout << i << ' ' << res << endl;
st[t] = true;
//更新最新S的权值和
for(int j = 1; j <= n; j++) dist[j] = min(dist[j], g[t][j]);
}
return res;
}
int main() {
cin >> n >> m;
int u, v, w;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
if(i ==j) g[i][j] = 0;
else g[i][j] = INF;
while(m--) {
cin >> u >> v >> w;
g[u][v] = g[v][u] = min(g[u][v], w);
}
int t = prim();
//临时存储防止执行两次函数导致最后仅返回0
if(t == INF) puts("impossible");
else cout << t << endl;
}
堆优化
#include<iostream>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
const int M=510,N=1e5+10;
typedef pair<int,int> PII;
int n,m;
int cnt,d[M];
int e[2*N],ne[2*N],h[2*N],w[2*N],idx; //必须开两倍的边数组,因为无向图需要有双向的边!!!!!!
bool st[N];
void add(int a,int b,int c){
//先找一波重边,取最小值,解决重边问题
for(int i=h[a];i!=-1;i=ne[i]){
int j=e[i];
if(j==b){
w[i]=min(c,w[i]);
return ;
}
}
//如果没有重边就加入
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
int prim(){
memset(d,0x3f,sizeof d);
//先找到最小的值
priority_queue<PII,vector<PII>,greater<PII>> q;
d[1]=0;
q.push({0,1});
int res=0,cnt=0;
while(!q.empty() && cnt<n){
auto t = q.top();
q.pop();
int u = t.second,distance = t.first;
if(st[u]) continue; //如果已经在集合内,则直接跳过
res+=distance; //加上这条路径
cnt++; //集合内结点+1
st[u]=true; //将结点放进集合内
for(int i=h[u];i!=-1;i=ne[i]){
int j=e[i];
if(d[j]>w[i]){ //使用的放入集合的点到后续点的距离更新 后续点到集合的距离
d[j]=w[i];
q.push({d[j],j});
}
}
}
if(cnt == n) return res;
return -1;
}
int main(){
cin>>n>>m;
memset(h,-1,sizeof h); //记得初始化,循环后续点的判断条件
while(m--){
int u,v,w;
cin>>u>>v>>w;
add(u,v,w); //无向图
add(v,u,w);
}
int res=prim();
if(res==-1) cout<<"impossible";
else cout<<res;
return 0;
}