Opencv
文章平均质量分 73
AI小笔记
人一能之,己百之;人十能之,己千之。
展开
-
光流法动目标检测
动目标检测是计算机视觉领域的一个热门研究方向。传统的方法主要基于背景建模,但这些方法对于光照变化、遮挡和噪声敏感。因此,研究人员一直在寻找更加鲁棒和有效的技术来解决这一问题。光流法是一种基于运动信息的动目标检测方法,它通过分析相邻帧之间的像素位移来捕捉物体的运动。这种方法可以在不需要显式背景建模的情况下实现动目标检测。。光流是指描述相邻图像帧中像素位移的矢量场。在光流法中,假设相邻帧之间的像素强度保持不变,即一个像素点在两帧之间的运动可以由一个矢量表示。这个矢量可以表示物体的速度和方向。原创 2023-10-24 09:00:00 · 1413 阅读 · 0 评论 -
opencv动态目标检测
很久没更新文章了,这次因为工作场景需要检测动态目标,特此记录一下。这段代码演示了背景减除方法在移动目标检测中的应用,通过检测前景目标并在特定区域内绘制边界框,可以用于一些简单的运动分析和目标跟踪应用。原创 2023-08-09 17:16:51 · 3322 阅读 · 1 评论 -
ffmpeg与opencv实现rtmp推流(基于ZLMediaKit实现)
文章目录前言代码总结前言之前记录过,GStreamer与opencv实现rtsp推流实现,这次通过ffmpeg与opencv并且搭配ZLMediaKit实现rtsp推流。代码import cv2import timeimport subprocess as spimport multiprocessingclass stream_pusher(object): def __init__(self, rtmp_url=None, raw_frame_q=None): # 类.原创 2021-08-31 20:41:40 · 3480 阅读 · 2 评论 -
win10下对编译完成后opencv_cuda进行移植
系列文章目录win10下Opencv源码编译支持CUDA加速的Python环境,超级详细教程!win10下对编译完成后opencv_cuda进行移植文章目录系列文章目录一、opencv-python环境配置二、 opencv-python cuda加速测试接着上一章win10下Opencv源码编译支持CUDA加速的Python环境,超级详细教程!,本章对编译完成后opencv_cuda进行移植设置适配环境为:Win10Visual Studio 2015 x64Opencv 4.5.0C原创 2021-03-06 10:50:07 · 527 阅读 · 2 评论 -
win10下Opencv源码编译支持CUDA加速的Python环境,超级详细教程!
环境准备1 vs20152 anaconda+Python3.7.4+numpy3 cuda和cudnn环境(cuda10.0+cudnn7.6.5)4 cmake5 OpenCV4.5.0以及OpenCV-contrib4.5.0压缩包OpenCV4.5.0下载地址https://www.bzblog.online/opencv/opencv-4.5.0/OpenCV-contrib4.5.0下载地址:https://www.bzblog.online/opencv/opencv_co原创 2021-02-23 12:00:19 · 2420 阅读 · 2 评论 -
OpenCV物体颜色检测(Python)
文章目录前言一、前期调查一、方案一二、使用步骤1.引入库2.读入数据总结前言最近工作又来新活了,船舶颜色检测。开始接到这个活还是有点懵,后面慢慢的感觉来了!!!一、前期调查因为本项目涉及到颜色判断与分类,笔者一开始就想到的就是每种颜色的范围划分是什么,刚开始想的是否能够依据RGB值来划分颜色,很遗憾没找到各类颜色的RGB分割阈值,后来找到了关于HSV颜色模型的颜色分量范围资料。OpenCV中HSV颜色模型及颜色分量范围这给项目的颜色划分提供了依据。一、方案一思路:提取前景(直接判断颜原创 2021-02-05 17:59:18 · 3623 阅读 · 4 评论 -
opencv图像拼接
文章目录解决过程:阶段一:阶段二待解决问题总结# 项目场景:固定相机角度拍摄多张船舶局部图像,要求拼出完整的船舶图像。解决过程:阶段一:一开始运用opencv自带的sift特征匹配算法,效果如下图出现这个结果的原因:因为相机是固定的,特征匹配时,主要匹配点为背景;基于以上结论的做法:1.读取文件时只把船的主体进行特征匹配以下代码是基于opencv-python=3.4.1.15# -*- coding:utf-8 -*-# @Time : 2021/1/12 19:35# .原创 2021-01-16 13:24:55 · 1983 阅读 · 7 评论