GAN
junchengberry
这个作者很懒,什么都没留下…
展开
-
GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)
我对GAN“生成对抗网络”(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学【机器学习与视觉实验室】负责人冯佳时博士在【硬创公开课】的GAN分享。GAN现在对于无监督图像标注来说是个神器,不过在NLP领域用的还不是那么广泛。 笔者看来,深度学...转载 2018-07-24 11:51:59 · 326 阅读 · 0 评论 -
caffe+GAN︱PPGN生成模型5则官方案例(caffe版)
一、效果与架构 PPGN 整合了对抗训练、cnn特征匹配、降噪自编码、Langevin采样;在NIPS2016得到了Ian Goodfellow的介绍. PPGN生成的图像同类差异化大,可根据指定生成不同类别的图像、多类化,生成的图像清楚分辨率高。 PPGN可使用imagenet1000类分类网络生成特定类别的图像。...转载 2018-07-24 11:53:53 · 525 阅读 · 0 评论 -
无监督学习︱GAN 在 NLP 中遇到瓶颈+稀疏编码自学习+对偶学习
深度学习训练一个模型需要很多的人工标注的数据。例如在图象识别里面,经常我们可能需要上百万的人工标注的数据,在语音识别里面,我们可能需要成千上万小时的人工标注的数据,机器翻译更是需要数千万的双语句对做训练。 看看标注数据的代价有多高。比如说对机器翻译而言,现在如果我们请人工来翻译,一个单词的费用差不多是5—10美...转载 2018-07-24 11:55:53 · 1282 阅读 · 0 评论