p2257 yy的gcd 莫比乌斯反演入门题

a n s = ∑ d = 1 m i n ( n , m ) ⌊ n / d ⌋ ⌊ m / d ⌋ ( ∑ x ∣ d μ ( d / x ) ) ans=\sum_{d=1}^{min(n,m)}\lfloor n/d \rfloor \lfloor m/d \rfloor (\sum_{x|d}\mu(d/x)) ans=d=1min(n,m)n/dm/d(xdμ(d/x))
就是前面就是整除分块,后面就是前缀和预处理解决多组询问
式子是由莫比乌斯反演推出来的,不难,但LaTex太费事了,以后拍照上传把

看着大佬推的式子 敲代码a了,感觉还得自己练一下推式子的能力

#include <stdio.h>
#include <string.h>
#include <algorithm>

using namespace std;
typedef long long ll;
const int maxn=1e7+7;
int prime[maxn],mu[maxn],g[maxn],tot;
ll sum[maxn];
bool p[maxn];
int T,n,m;

void get_mu(){
    mu[1]=1;
    for(int i=2;i<maxn;i++){
        if(!p[i])prime[++tot]=i,mu[i]=-1;
        for(int j=1;i*prime[j]<maxn;j++){
            p[i*prime[j]]=1;
            if(i%prime[j]==0)break;
            mu[i*prime[j]]=-mu[i];
        }
    }
    for(int i=1;i<=tot;i++)
        for(int j=1;j*prime[i]<maxn;j++)g[j*prime[i]]+=mu[j];
    for(int i=1;i<maxn;i++)sum[i]=sum[i-1]+g[i];
}
int main()
{
    get_mu();
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&m);
        if(n>m)swap(n,m);ll ans=0;
        for(int i=1,gi;i<=n;i=gi+1){
            gi=min(n/(n/i),m/(m/i));
            ans+=(ll)(n/i)*(m/i)*(sum[gi]-sum[i-1]);
        }
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值