a
n
s
=
∑
d
=
1
m
i
n
(
n
,
m
)
⌊
n
/
d
⌋
⌊
m
/
d
⌋
(
∑
x
∣
d
μ
(
d
/
x
)
)
ans=\sum_{d=1}^{min(n,m)}\lfloor n/d \rfloor \lfloor m/d \rfloor (\sum_{x|d}\mu(d/x))
ans=∑d=1min(n,m)⌊n/d⌋⌊m/d⌋(∑x∣dμ(d/x))
就是前面就是整除分块,后面就是前缀和预处理解决多组询问
式子是由莫比乌斯反演推出来的,不难,但LaTex太费事了,以后拍照上传把
看着大佬推的式子 敲代码a了,感觉还得自己练一下推式子的能力
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=1e7+7;
int prime[maxn],mu[maxn],g[maxn],tot;
ll sum[maxn];
bool p[maxn];
int T,n,m;
void get_mu(){
mu[1]=1;
for(int i=2;i<maxn;i++){
if(!p[i])prime[++tot]=i,mu[i]=-1;
for(int j=1;i*prime[j]<maxn;j++){
p[i*prime[j]]=1;
if(i%prime[j]==0)break;
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=tot;i++)
for(int j=1;j*prime[i]<maxn;j++)g[j*prime[i]]+=mu[j];
for(int i=1;i<maxn;i++)sum[i]=sum[i-1]+g[i];
}
int main()
{
get_mu();
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);ll ans=0;
for(int i=1,gi;i<=n;i=gi+1){
gi=min(n/(n/i),m/(m/i));
ans+=(ll)(n/i)*(m/i)*(sum[gi]-sum[i-1]);
}
printf("%lld\n",ans);
}
return 0;
}