概率论与数理统计

集合的运算

A − B = A B ˉ = A ( Ω − B ) = A Ω − A B = A − A B A-B = A\bar{B} = A(Ω-B) = AΩ - AB = A-AB AB=ABˉ=A(ΩB)=AΩAB=AAB
事件(集合)的运算规则.jpg

概率的公理化定义

  • 任何事件的概率 0 ≤ P ( A ) ≤ 1 0 \le P(A) \le 1 0P(A)1;

  • Ω 为 完 备 事 件 组 \Omega 为完备事件组 Ω, P ( Ω ) = 1 P(Ω) = 1 P(Ω)=1;

  • 互不相容的事件 A 1 , A 2 , . . . A n A_1,A_2, ... A_n A1,A2,...An:

任意两个事件 A i , A j A_i,A_j Ai,Aj满足 A i ∩ A j = Φ A_i\cap A_j = Φ AiAj=Φ,则有:
P ( ⋃ k = 1 n A k ) = ∑ k = 1 n P ( A k ) P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^n P(A_k) P(k=1nAk)=k=1nP(Ak)

  • Φ Φ Φ为空集, P ( Φ ) = 0 P(Φ) = 0 P(Φ)=0;
  • 对于任意事件 A A A P ( A ) + P ( A ˉ ) = P ( A ∪ A ˉ ) = 1 P(A) + P(\bar{A}) = P(A\cup\bar{A}) = 1 P(A)+P(Aˉ)=P(AAˉ)=1;
  • 对于任意两个事件 A , B A,B A,B有: P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B) = P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB);
  • 对于任意两个事件 A , B A,B A,B有: P ( A − B ) = P ( A B ˉ ) = P ( A ) − P ( A B ) P(A-B)=P(A\bar B)=P(A)-P(AB) P(AB)=P(ABˉ)=P(A)P(AB);
  • P ( A B ) + P ( A ˉ B ) = P ( A B ∪ A ˉ B ) = P ( B ) P(AB)+P(\bar{A}B)=P(AB\cup \bar{A}B)=P(B) P(AB)+P(AˉB)=P(ABAˉB)=P(B);

排列公式

0 ! = 1 0!=1 0!=1
P n m = n ( n − 1 ) ( n − 2 ) ⋯ ( n − m + 1 ) = n ! ( n − m ) ! P_n ^ m = n(n-1)(n-2)\cdots (n-m+1) = \frac{n!}{(n-m)!} Pnm=n(n1)(n2)(nm+1)=(nm)!n!
A n m = n ( n − 1 ) ( n − 2 ) ⋯ ( n − m + 1 ) = n ! ( n − m ) ! A_n ^m = n(n-1)(n-2)\cdots (n-m+1) = \frac{n!}{(n-m)!} Anm=n(n1)(n2)(nm+1)=(nm)!n!

组合公式

C n 0 = C n n = 1 C_n^0 = C_n^n = 1 Cn0=Cnn=1
C n 1 = C n n − 1 = n C_n ^ 1 = C_n ^ {n-1} = n Cn1=Cnn1=n

m > n m\gt n m>n时, C n m = 0 C_n^m =0 Cnm=0

C n m = A n m m ! = n ! m ! ( n − m ) ! C_n^m = \frac{A_n^m}{m!} = \frac{n!}{m!(n-m)!} Cnm=m!Anm=m!(nm)!n!
C n m = C n n − m C_n^m = C_n^{n-m} Cnm=Cnnm
C n + 1 m = C n m + C n m − 1 C_{n+1} ^ m = C_n^m + C_n ^ {m-1} Cn+1m=Cnm+Cnm1
C n 0 + C n 1 + C n 2 + ⋯ + C n n = 2 n C_n^0 + C_n^1 + C_n^2 + \cdots + C_n^n = 2^n Cn0+Cn1+Cn2++Cnn=2n
C n 0 + C n 2 + C n 4 = C n 1 + C n 3 + C n 5 = 2 n − 1 C_n^0 + C_n^2 + C_n^4 = C_n^1 + C_n^3 + C_n^5 = 2^{n-1} Cn0+Cn2+Cn4=Cn1+Cn3+Cn5=2n1

条件概率的定义

设有两个事件A,B,P(B)≠0, 在给定B发生的条件下,A发生的概率记为 P(A|B),则:
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac{P(AB) } {P(B)} P(AB)=P(B)P(AB)

P ( A ∣ B ) + P ( A ˉ ∣ B ) = 1 P(A|B) + P(\bar{A}|B) = 1 P(AB)+P(AˉB)=1

证明过程:
∵ P ( A ∣ B ) = P ( A B ) P ( B ) \because P(A|B) =\frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)
并且 P ( A ˉ ∣ B ) = P ( A ˉ B ) P ( B ) P(\bar{A}|B) =\frac{P(\bar{A}B)}{P(B)} P(AˉB)=P(B)P(AˉB)
∴ P ( A ∣ B ) + P ( A ˉ ∣ B ) = P ( A B ) + P ( A ˉ B ) P ( B ) = P ( A B ∪ A ˉ B ) P ( B ) = P ( B Ω ) P ( B ) = 1 \therefore P(A|B) + P(\bar{A}|B) = \frac{P(AB)+P(\bar{A}B)}{P(B)}= \frac{P(AB\cup \bar{A}B)}{P(B)}=\frac{P(BΩ)}{P(B)}=1 P(AB)+P(AˉB)=P(B)P(AB)+P(AˉB)=P(B)P(ABAˉB)=P(B)P(BΩ)=1

如果 P(B) >0, 那么有如下:

  1. 0 ≤P(A|B)≤1
  2. P(Ω|B) = 1

如果有互不相容的事件 A 1 , A 2 , . . . A n A_1,A_2, ... A_n A1,A2,...An
P ( ⋃ k = 1 n A k ∣ B ) = ∑ k = 1 n P ( A k ∣ B ) P(\bigcup_{k=1}^{n} A_k|B) = \sum_{k=1}^n P(A_k|B) P(k=1nAkB)=k=1nP(AkB)

A 1 , A 2 , A 3 A_1, A_2, A_3 A1,A2,A3三个事件,若 P ( A 1 A 2 A 3 ) > 0 P(A_1A_2A_3)\gt 0 P(A1A2A3)>0则有:
P ( A 1 ∩ A 2 ∩ A 3 ) = P ( A 1 A 2 A 3 ) P(A_1\cap A_2\cap A_3) = P(A_1A_2A_3) P(A1A2A3)=P(A1A2A3)
P ( A 1 A 2 A 3 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) P(A_1 A_2 A_3) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2) P(A1A2A3)=P(A1)P(A2A1)P(A3A1A2)

条件概率两个性质:
  • P ( A − B ∣ C ) = P ( A ∣ C ) − P ( A B ∣ C ) = P ( A B ˉ ∣ C ) P(A-B|C)=P(A|C)-P(AB|C)=P(A\bar B|C) P(ABC)=P(AC)P(ABC)=P(ABˉC)
  • P ( A ∪ B ∣ C ) = P ( A ∣ C ) + P ( B ∣ C ) − P ( A B ∣ C ) P(A\cup B|C)=P(A|C)+P(B|C)-P(AB|C) P(ABC)=P(AC)+P(BC)P(ABC)

全概率公式

B 1 , B 2 , . . . . B n B_1, B_2, .... B_n B1,B2,....Bn 是Ω的完备事件组, 并且它们任意两个都是互不相容的, 那么有:
P ( A ) = ∑ k = 1 n P ( A B k ) = ∑ k = 1 n P ( B k ) P ( A ∣ B k ) P(A) = \sum_{k=1}^n P(A B_k) = \sum_{k=1}^n P(B_k) P(A|B_k) P(A)=k=1nP(ABk)=k=1nP(Bk)P(ABk)

从上面的公式可以推导出贝叶斯公式,如下:
P ( B k ∣ A ) = P ( B k ) P ( A ∣ B k ) ∑ k = 1 n P ( B k ) P ( A ∣ B k ) P(B_k|A) = \frac {P(B_k)P(A|B_k)} {\sum_{k=1}^n P(B_k) P(A|B_k)} P(BkA)=k=1nP(Bk)P(ABk)P(Bk)P(ABk)

贝氏定理

由上面的条件概率公式可以推出:
P ( A ∣ B , C ) = P ( A ) ∗ P ( B ∣ A ) ∗ P ( C ∣ A , B ) / ( P ( B ) ∗ P ( C ∣ B ) ) P(A|B,C)=P(A)*P(B|A)*P(C|A,B)/(P(B)*P(C|B)) P(AB,C)=P(A)P(BA)P(CA,B)/(P(B)P(CB))

这里的:
P ( A ∣ B , C ) = P ( A ∣ B C ) P(A|B,C) = P(A|BC) P(AB,C)=P(ABC)
证明过程:
∵ P ( A ∣ B , C ) = P ( A , B , C ) P ( B , C ) \because P(A|B,C)=\frac{P(A,B,C)}{P(B,C)} P(AB,C)=P(B,C)P(A,B,C)
∴ P ( A ∣ B , C ) = P ( A ) P ( B ∣ A ) P ( C ∣ A , B ) P ( B , C ) \therefore P(A|B,C)=\frac{P(A)P(B|A)P(C|A,B)}{P(B,C)} P(AB,C)=P(B,C)P(A)P(BA)P(CA,B)
∴ P ( A ∣ B , C ) = P ( A ) P ( B ∣ A ) P ( C ∣ A , B ) P ( B ) ∗ P ( C ∣ B ) \therefore P(A|B,C)=\frac{P(A)P(B|A)P(C|A,B)}{P(B)*P(C|B)} P(AB,C)=P(B)P(CB)P(A)P(BA)P(CA,B)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值