hdu 4757 Tree (可持久化trie)

链接

题意:

有一棵n个节点的树,每个节点有一个权值,询问u节点到v节点的链上异或x的最大值



思路:

dfs建树,对于u这个版本,它的上一个版本是它的父亲节点。然后就是查询了,这类树上询问一条链的问题,很多都是利用lca解决的。求出u,v两个点的lca,u到lca其实应该query(u,fa[lca])才行,v和lca同样。但是也可以query(u/v,lca),最后在把lca的位置单独拿出来考虑一下就可以了。

参考代码:
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int n,m;
int a[N];
int head[N],cnt;
struct _edge{
    int v,nxt;
}edge[N<<1];

void add_edge(int u,int v){
    edge[++cnt].v=v;
    edge[cnt].nxt=head[u];
    head[u]=cnt;
}

int ch[N<<5][2];
int sz[N<<5];
int root[N],tot;
void update(int last,int cur,int v){
    for(int i=15;i>=0;i--){
        ch[cur][0]=ch[last][0];
        ch[cur][1]=ch[last][1];
        sz[cur]=sz[last]+1;
        int j=1&(v>>i);
        ch[cur][j]=++tot;
        cur=ch[cur][j];
        last=ch[last][j];
    }
    sz[cur]=sz[last]+1;
}

int dep[N];
int f[N][20];

void dfs(int u,int fa){
    dep[u]=dep[fa]+1;
    f[u][0]=fa;
    for(int i=1;i<18;i++){
        f[u][i]=f[f[u][i-1]][i-1];
    }
    update(root[fa],root[u]=++tot,a[u]);
    for(int i=head[u];~i;i=edge[i].nxt){
        int v=edge[i].v;
        if(v==fa)continue;
        dfs(v,u);
    }
}

int lca(int a,int b)
{
    if(dep[a]>dep[b])swap(a,b);
    if(dep[a]<dep[b])
    {
        int del=dep[b]-dep[a];
        for(int i=0;i<18;i++)
            if(del&(1<<i))b=f[b][i];
    }
    if(a==b)return a;
    for(int i=17;i>=0;i--)
    {
        if(f[a][i]!=f[b][i])
        {
            a=f[a][i],b=f[b][i];
        }
    }
    return f[a][0];
}

int query(int x,int y,int v)
{
    int z=lca(x,y);int res=a[z]^v;
    x=root[x],y=root[y],z=root[z];
    int ret=0;
    for(int i=15;i>=0;i--){
        int c=1&(v>>i);
        if(sz[ch[x][!c]]+sz[ch[y][!c]]-2*sz[ch[z][!c]]>0){//判断之间有没有合法的数字
            ret+=1<<i;
            c=!c;
        }
        x=ch[x][c];
        y=ch[y][c];
        z=ch[z][c];
    }
    return max(ret,res);
}

int main(){
    while (~scanf("%d%d",&n,&m)){
        for(int i=1;i<=n;i++){
            scanf("%d",&a[i]);
        }
        memset(head,-1, sizeof(head));cnt=0;
        for(int i=1,u,v;i<n;i++){
            scanf("%d%d",&u,&v);
            add_edge(u,v);
            add_edge(v,u);
        }
        tot=0;
        dfs(1,0);
        for(int i=1,x,y,z;i<=m;i++){
            scanf("%d%d%d",&x,&y,&z);
            printf("%d\n",query(x,y,z));
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值