背包问题

https://blog.csdn.net/tingting256/article/details/51150208

背包的基本模型就是给你一个容量为V的背包

在一定的限制条件下放进最多(最少?)价值的东西

一般常用动态规划,存在以前状态向当前状态的一个转换,先求出之前状态的最优解,然后根据之前的状态得到现在状态的最优解。

常见的有三种限制条件。

01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

比较三个题目,会发现不同点在于每种背包的数量,01背包是每种只有一件,完全背包是每种无限件,而多重背包是每种有限件。

01背包问题

01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

把这个过程理解下:在前i件物品放进容量v的背包时,

它有两种情况:

第一种是第i件不放进去,这时所得价值为:f[i-1][v]

第二种是第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i]

(第二种是什么意思?就是如果第i件放进去,那么在容量v-c[i]里就要放进前i-1件物品)

最后比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种。

对于每一个物品,我们都有放进去与不放进去两种选择.

import java.util.*;
public class Package01 {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        while (in.hasNext()) {
            int n = in.nextInt();
            int weight = in.nextInt();
            int[] v = new int[n + 1];
            int[] w = new int[n + 1];
            int[][] res = new int[n + 1][weight + 1];
            for (int i = 1; i <=n; i++) {
                w[i] = in.nextInt();
                v[i] = in.nextInt();
            }
            for (int i = 1; i <=n; i++) {
                res[i][0] = 0;
            }
            for (int j = 0; j <=weight; j++) {
                res[0][j] = 0;
            }
            for(int i=1;i<=n;i++) {
                for (int k = 1; k <= weight; k++) {
                    res[i][k] = res[i - 1][k];
                        if (w[i] <= k) {
                            if (v[i] + res[i-1][k - w[i]] > res[i-1][k])
                            {
                                res[i][k] = v[i] + res[i-1][k - w[i]];
                            }

                    }
                }
            }
            System.out.println(res[n][weight]);
        }
        in.close();
    }
}

我们想想看,能不能进行一下优化,其实我们并不需要保存每一层i的结果,我们只需要i-1的结果,那么我们可不可以优化成一维数组呢,要优化成一位数组也就意味着我们需要反向遍历,这样就可以保证每次更新的时候都用的是上一层的状态。

    public static void main(String[] args) {
        Scanner sc=new Scanner(System.in);
        while(sc.hasNext()){
            int n=sc.nextInt();
            int weight = sc.nextInt();
            int[] v=new int[n+1];
            int[] w=new int[n+1];
            int[] res=new int[weight+1];

            for(int i=1;i<=n;i++){
                w[i]=sc.nextInt();
                v[i]=sc.nextInt();
            }

            for(int i=1;i<=n;i++){
                for(int k=weight;k>=0;k--){
                    if(w[i]<=k){
                        res[k]=Math.max(res[k],res[k-w[i]]+v[i]);
                    }
                }
            }
            System.out.println(res[weight]);
        }
                //4 8
                //2 3
                //3 4
                //4 5
                //5 6
                //10
    }

完全背包

完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

完全背包按其思路仍然可以用一个二维数组来写出:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}

同样可以转换成一维数组来表示:

伪代码如下:

for i=1..N
    for v=0..V
        f[v]=max{f[v],f[v-c[i]]+w[i]}

想必大家看出了和01背包的区别,这里的内循环是顺序的,而01背包是逆序的。

现在关键的是考虑:为何完全背包可以这么写?
在次我们先来回忆下,01背包逆序的原因?是为了求max中的两项是前一状态值,这就对了。
那么这里,我们顺序写,这里的max中的两项当然就是当前状态的值了,为何?
因为每种背包都是无限的。当我们把i从1到N循环时,f[v]表示容量为v在前i种背包时所得的价值,这里我们要添加的不是前一个背包,而是当前背包。所以我们要考虑的当然是当前状态。
对于二维数组,更新的时候为res[i][j-w[k]]

优化:对于完全背包,如果w[i]<=w[j]&&v[i]>=v[j]那么j就可以删掉了 优化是o(N*N)对于随机生成的值比较明显

public class test{
      public static void main(String[] args){
           int[] weight = {3,4,6,2,5};
           int[] val = {6,8,7,5,9};
           int maxw = 10;
           int[] f = new int[maxw+1];
           for(int i=0;i<f.length;i++){
               f[i] = 0;
           }
           //与P01的伪代码只有v的循环次序不同
           for(int i=0;i<val.length;i++){//每种物品
               for(int j=weight[i];j<f.length;j++){
               //每种物品放n个
                   f[j] = Math.max(f[j], f[j-weight[i]]+val[i]);
               }
           }
           System.out.println(f[maxw]);//25
      }
    }

多重背包

多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}

这里同样转换为01背包。

package eg.nk_mt;

import java.util.Scanner;

/**
 * 多重背包
 * 多重和完全更接近,多了数量的限制,用一个count[n]计数数组来限制物品i的数量。
 * 当放入第i个物品是较优值的时候,count[i]=count[j-weight[i]]+1(j 的含义:);
 * 这样做是因为,放入第i个物品的操作是基于count[j-weight[i]]放入的,
 * 所以当count[i-weight[i]]>=amount[i]时,就要阻止放入即便放入第i个物品是较优值
 */
public class backpack03 {
    public static void main(String[] args) {
/*        Scanner in = new Scanner(System.in);
        int n = in.nextInt();//物品种类个数
        int [] weight = new int[n];//重量
        int [] value = new int[n];//价值
        for (int i = 0; i < n; i++) {
            weight[i] = in.nextInt();
        }
        for (int i = 0; i < n; i++) {
            value[i] = in.nextInt();
        }
        int target = in.nextInt();//背包容量*/
        int n = 5;
        int [] weight = {5,4,7,2,6};
        int [] value = {12,3,10,3,6};
        int target = 15;
        int [] account = {2,4,6,8,1};//每种物品的数量
        int[] arr = new int[target + 1];
        //依次轮转,把当背包中有一个、二个、三个,,,
        for (int i = 0; i < n; i++) {  // i 表示背包中可以放前(i + 1) 种物品
            // 完全背包问题
            if(weight[i] * account[i] >= target){
                for (int j = weight[i]; j <= target; j++) {  
                    arr[j] = Math.max(arr[j],arr[j - weight[i]] + value[i]);
                }
                return;
            }
            //01背包问题,并使用二进制方法进行优化
            int tmpCount = 1;
            while (tmpCount < account[i]){
                for (int j = target; j >= tmpCount * weight[i]; j--) {  // j 表示当前背包的容量
                    arr[j] = Math.max(arr[j],arr[j - tmpCount * weight[i]] + tmpCount * value[i]);
                }
                account[i] -= tmpCount;
                tmpCount = tmpCount << 1;
            }
            for (int j = target; j >= weight[i]; j--) {  // j 表示当前背包的容量
                arr[j] = Math.max(arr[j],arr[j - weight[i]] + value[i]);
            }

        }
        for (int i = 0; i <= target; i++) {
            System.out.print(arr[i] + " ");
        }

    }
}

有一头奶牛要上太空,他有很多种石头,每种石头的高度是hi,但是不能放到ai之上的高度,并且这种石头有ci个
将这些石头叠加起来,问能够达到的最高高度。
解题思路:首先对数据进行升序排序,这样才是一个标准的多重背包的问题。为什么要排序?因为只有这样才能得到最优解,如果一开始就是高的在前面,那么后面有低的却不能选到,就直接选高的去了。这样是不能达到最优解的。

import java.util.*;
public class SpaceElevator {
    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        int len=40010;
        while (in.hasNext()) {
            int n=in.nextInt();
            Node[] a=new Node[n];
            for(int i=0;i<n;i++)
            {
                a[i]=new Node(in.nextInt(),in.nextInt(),in.nextInt());
            }
            Arrays.sort(a);
            boolean[] dp=new boolean[len];
            dp[0]=true;
            int res=0;
            for(int i=0;i<n;i++)
            {
                int[] sum=new int[len];
                for(int j=a[i].h;j<=a[i].a;j++)
                {
                    if(!dp[j]&&dp[j-a[i].h]&&sum[j-a[i].h]<a[i].c) //首先如果高度j已经达到的话,那么就不需要继续计算了
                    {
                        dp[j]=true;
                        sum[j]=sum[j-a[i].h]+1;
                        if(j>res) res=j;
                    }
                }
            }
            System.out.println(res);
        }
    }
    public static class Node implements Comparable<Node>
    {
        public int h;
        public int a;
        public int c;
        Node(int h,int a,int c)
        {
            this.h=h;
            this.a=a;
            this.c=c;
        }
        @Override
        public int compareTo(Node node) {
            if(this.a>node.a) return 1;
            else if(this.a<node.a) return -1;
            return 0;

        }
    }
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值