背包问题笔记

背包的基本模型:
给你一个容量为V的背包和若干种物品,在一定的限制条件下(每种物品都占用一定容量),问最多能放进多少价值的物品?

背包是很典型、最基本的DP问题

背包的每个容量都是“状态”

背包问题的分类
01背包
完全背包  多重背包
二维费用背包   混合三种背包   分组背包   有依赖的背包

一、01背包

问题:

有 N 件物品和一个容量为 V 的背包。第 i 件物品的费用是 c[i] ,价值是w[i]  。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

问题分析:

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即dp[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

则其状态转移方程便是:dp[i][v]=max{dp[i-1][v],dp[i-1][v-c[i]]+w[i]}

代码模板:

#include<bits/stdc++.h>
using namespace std;
int dp[1001],w[1001],c[1001];
int main(){
    int n,v;
        cin>>n>>v;
        for(int i=0;i<n;i++) cin>>c[i]>>w[i];
        memset(dp,0,sizeof(dp));
        for(int i=0;i<n;i++)
            for(int j=v;j>=c[i];j--)
                dp[j]=max(dp[j],dp[j-c[i]]+w[i]);
        cout<<dp[v]<<endl;
    return 0;
}

二、完全背包:

问题:

有 N 种物品和一个容量为 V 的背包,每种物品都有无限件可用。第i种物品的费用是C[i]  ,价值是W[i]  。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

问题分析:

特点,背包可以取无数次。

伪代码:

for(int i=0;i<n;i++)
    for(int v=0;i<v;i++)
        f[v]=max{f[v],f[v-c[i]]+w[i]};

将这一段代码替换01背包的问题代码即可实现。这正是为了保证每件物品只选一次,保证在考虑“选入第 i 件物品”这件策略时,依据的是一个绝无已经选入第 i 件物品的子结果f([i-1][v-c[i]])  。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果 f([i][v-c[i]]),所以就可以并且必须采用 0-V 的顺序循环。

三、多重背包:

问题:

有 N 种物品和一个容量为 V 的背包。第i种物品最多有 n[i]件可用,每件费用是 c[i] ,价值是 w[i] 。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

问题分析:

这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有 n[ i ] +1 种策略:取 0 件,取 1 件……取 n[ i ] 件。令 f[ i ][ v ] 表示前 i 种物品恰放入一个容量为 v 的背包的最大权值.

四、混合三种背包问题:

问题:

如果将前三种混合起来,也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?

问题分析:

此问题就是前三个背包的混合问题,可以先看成01背包和完全背包问题,只取一个或取无穷个,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可。

if是01背包则{
for(int i=0;i<n;i++)
            for(int j=v;j>=c[i];j--)
                dp[j]=max(dp[j],dp[j-c[i]]+w[i]);
}
else {
    for(int i=0;i<n;i++)
        for(int v=0;i<v;i++)
            f[v]=max{f[v],f[v-c[i]]+w[i]};
}

 五、二维费用的背包问题

问题:

二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价 1 和代价 2 ,第i件物品所需的两种代价分别为 a[ i ] 和 b [ i ] 。两种代价可付出的最大值(两种背包容量)分别为 V 和 U 。物品的价值为 w[ i ] 。

问题分析:

费用加了一维,只需状态也加一维即可。设f[ i ][ v ][ u ]表示前 i 件物品付出两种代价分别为 v 和 u 时可获得的最大价值。状态转移方程就是:

f[ i ][ v ][ u ]= max(f[ i-1 ][ v ][ u ],f[ i-1 ][ v-a[ i ] ][ u - b[ i ]]+ w[ i ])

 如前述方法,可以只使用二维的数组:当每件物品只可以取一次时变量 v 和 u 采用顺序的循环,当物品有如完全背包问题时采用逆序的循环。当物品有如多重背包问题时拆分物品。

一天一到两个背包问题,慢慢理解!!!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我明白了。关于分支限界法的01背包问题,我可以给你一些思路和算法实现的笔记。 首先,01背包问题是指在有限的背包容量下,从给定的一组物品中选取一些物品放入背包中,使得背包中物品的总价值最大。而分支限界法则是一种解决优化问题的方法,它通过限制问题的搜索空间,逐步缩小问题的解空间,从而获得最优解。 对于01背包问题,我们可以采用以下步骤: 1. 构造一个搜索树,根节点代表空背包,每个节点代表向背包中添加一个物品或不添加物品的决策。 2. 对于每个节点,计算当前背包中物品的总价值以及还有多少容量可以使用。 3. 对于每个未被扩展的节点,计算它的上界价值(即背包在剩余容量中所能获得的最大价值),并按照上界价值从大到小排序。 4. 选择上界价值最大的节点进行扩展,即添加一个物品或不添加物品的两种决策分别扩展出两个子节点。 5. 不断重复步骤3和4,直到搜索树中的所有节点都被扩展完毕。 以下是一个简单的C语言实现,其中用一个结构体表示每个节点的状态,通过一个优先队列来实现按照上界价值排序的功能: ```c #include <stdio.h> #include <stdlib.h> #define MAX_N 1000 int n, c; int w[MAX_N], v[MAX_N]; int max_v; typedef struct Node { int level; int value; int weight; int bound; } Node; typedef struct PriorityQueue { Node* arr[MAX_N]; int size; } PriorityQueue; PriorityQueue* createPriorityQueue() { PriorityQueue* q = (PriorityQueue*)malloc(sizeof(PriorityQueue)); q->size = 0; return q; } void push(PriorityQueue* q, Node* node) { q->arr[q->size++] = node; int i = q->size - 1; while (i > 0 && q->arr[i]->bound > q->arr[(i - 1) / 2]->bound) { Node* temp = q->arr[i]; q->arr[i] = q->arr[(i - 1) / 2]; q->arr[(i - 1) / 2] = temp; i = (i - 1) / 2; } } Node* pop(PriorityQueue* q) { Node* node = q->arr[0]; q->arr[0] = q->arr[--q->size]; int i = 0; while (i * 2 + 1 < q->size) { int j = i * 2 + 1; if (j + 1 < q->size && q->arr[j + 1]->bound > q->arr[j]->bound) { j++; } if (q->arr[i]->bound < q->arr[j]->bound) { Node* temp = q->arr[i]; q->arr[i] = q->arr[j]; q->arr[j] = temp; i = j; } else { break; } } return node; } void solve() { PriorityQueue* q = createPriorityQueue(); Node* root = (Node*)malloc(sizeof(Node)); root->level = 0; root->value = 0; root->weight = 0; root->bound = max_v; push(q, root); while (q->size > 0) { Node* node = pop(q); if (node->bound <= max_v || node->level == n) { continue; } Node* left = (Node*)malloc(sizeof(Node)); left->level = node->level + 1; left->value = node->value + v[left->level]; left->weight = node->weight + w[left->level]; if (left->weight <= c) { left->bound = left->value + (max_v - left->value) * 1.0 / w[left->level]; if (left->value > max_v) { max_v = left->value; } push(q, left); } Node* right = (Node*)malloc(sizeof(Node)); right->level = node->level + 1; right->value = node->value; right->weight = node->weight; right->bound = right->value + (max_v - right->value) * 1.0 / w[right->level]; push(q, right); } } int main() { scanf("%d%d", &n, &c); for (int i = 1; i <= n; i++) { scanf("%d%d", &w[i], &v[i]); max_v += v[i]; } solve(); printf("%d", max_v); return 0; } ``` 希望这些笔记能够对你有所帮助,如果有任何问题,欢迎随时问我。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值