最小的K个数 -C

最小的K个数 -C

题目描述 : ------------------------------------------------------------

给定一个数组,找出其中最小的K个数。例如数组元素是4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4。
0 <= k <= input.length <= 10000
0 <= input[i] <= 10000

输入样例1 : ------------------------------------------------------------

[4,5,1,6,2,7,3,8],4

返回值1 : ------------------------------------------------------------

[1,2,3,4]
返回最小的4个数即可,返回[1,3,2,4]也可以

输入样例2 : ------------------------------------------------------------

[1],0

返回值2 : ------------------------------------------------------------

[]

// 勇士写法
class Solution {
public:
    vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
        sort(input.begin(), input.end());
        return vector<int>(input.begin(), input.begin() + k);
    }
};
// 利用最大堆
class Solution {
public:
    vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
        priority_queue<int, vector<int>> maxHeap;
        vector<int> res;
        if (k==0 || k > input.size()) 
            return res;
        for (int val : input)
            if (maxHeap.size() < k) {
                maxHeap.push(val);
            }
            else if (val < maxHeap.top()) {
                    maxHeap.pop();
                    maxHeap.push(val);
            }
        while (!maxHeap.empty()) {
            res.push_back(maxHeap.top());
            maxHeap.pop();
        }
        return res;
    }
};
// 快排
class Solution {
public:
    int quickSort(vector<int>& v, int left, int right) {
        int midVal = v[right - 1];
        int i = left;
        for (int j = left; j < right - 1; j++)
            if (v[j] < midVal)
                swap(v[i++], v[j]);
        swap(v[i], v[right - 1]);
        return i;
    }
    vector<int> GetLeastNumbers_Solution(vector<int> input, int k) {
        vector<int> res;
        if (k==0 || k > input.size())
            return res;
        int left = 0, right = input.size();
        while (left < right) {
            int p = quickSort(input, left, right);
            if (p + 1 == k)
                return vector<int>(input.begin(), input.begin() + k);
            else if (p + 1 < k)
                left = p + 1;
            else
                right = p;
        }
        return res;
    }
};
在C语言中,找到一组整数中的最小k个数可以采用多种算法实现,其中一种常见的方法是使用优先队列(通常称为堆),特别是大顶堆(Max Heap)。这里提供一个简单的示例,使用大顶堆结构: ```c #include <stdio.h> #include <stdlib.h> // 定义一个数组大小 #define MAX_SIZE 100 // 结构体表示堆节点,包含值和索引 typedef struct { int value; int index; } MinHeapNode; // 大顶堆实现,用于存储前k小的元素 void max_heapify(int arr[], int n, int i) { int largest = i; // 初始化最大值位置为根节点 int left = 2 * i + 1; // 左孩子 int right = 2 * i + 2; // 右孩子 if (left < n && arr[left] > arr[largest]) { largest = left; } if (right < n && arr[right] > arr[largest]) { largest = right; } if (largest != i) { // 如果有更大值 swap(&arr[i], &arr[largest]); // 交换 max_heapify(arr, n, largest); // 递归调整子树 } } // 建立大顶堆 void build_max_heap(int arr[], int k) { for (int i = k / 2 - 1; i >= 0; i--) { max_heapify(arr, k, i); } } // 添加新元素到堆并保持堆性质 void insert(int arr[], int n, int k, int new_val, int new_index) { arr[n++] = new_val; // 添加新元素 max_heapify(arr, k, n - 1); // 调整以保持堆 } // 获取最小k个数 void get_min_k(int arr[], int k) { printf("The smallest %d numbers are:\n", k); for (int i = 0; i < k; i++) { printf("%d ", arr[0]); swap(&arr[0], &arr[k - 1]); // 将当前堆顶移到末尾 max_heapify(arr, k - 1, 0); // 更新堆 } } // 主函数示例 int main() { int arr[] = {9, 8, 7, 6, 5, 4, 3, 2, 1}; int n = sizeof(arr) / sizeof(arr[0]), k = 3; build_max_heap(arr, k); // 创建初始堆 // 假设我们有新元素插入 insert(arr, n, k, 100, 10); // 新元素:100, 索引:10 get_min_k(arr, k); // 输出前k小数 return 0; } ``` 在这个例子中,`build_max_heap()`函数建立了一个大顶堆,`insert()`函数用于添加新元素并维护堆属性,`get_min_k()`函数则从堆中获取并删除最小的k个元素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

均瑶味动力

觉得有帮助的话就请打赏我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值