【算法杂货铺】二分算法


目录

🌈前言🌈

📁 朴素二分查找

 📂 朴素二分模板

📁 查找区间端点处

细节(重要)

 📂 区间左端点处模板

 📂 区间右端点处模板

📁 习题

1. 35. 搜索插入位置 - 力扣(LeetCode)

2. 69. x 的平方根 - 力扣(LeetCode)

3.153. 寻找旋转排序数组中的最小值 - 力扣(LeetCode)

4. LCR 173. 点名 - 力扣(LeetCode)        

5. 852. 山脉数组的峰顶索引 - 力扣(LeetCode)

6.162. 寻找峰值 - 力扣(LeetCode)

📁 总结

🌈前言🌈

        欢迎观看本期【算法杂货铺】,本期内容将讲解基础算法中的——二分算法。二分查找算法,就是利用二段性,将问题划分成两个区间,去掉一个区间,在另一个区间查找答案。

        二分查找是有模板供大家使用的,即背下模板,只需要略微修改即可,但本文旨在理解这些模板。

        本篇文章通过讲解例题,带大家快速了解二分算法,分为3步,讲解各个二分算法。1. 题目解析;2. 算法思路;3. 代码展示。

📁 朴素二分查找

704. 二分查找 - 力扣(LeetCode)

1. 题目解析

        相信有一点语言基础的人都会这道题目,我们只需要遍历一遍这个数组即可,如果找到范围下标,没有找到返回-1,但是这种暴力解法,时间复杂度是O(N)。

        这里我们还有一个初始条件没有用到,即n个元素使有序的(升序)。

2. 算法原理

        上图中,我们通过在一个数组中查找7,给大家展示了二分算法的基本思路。即根据某种规则,将区间划分成两端,再根据规则,舍去一端区间,在另一端区间内查找。

结束条件:

        当 left > right 的时候,不存在区间,循环结束。为什么left可以等于right呢,当只有1个元素的时候,也是要查找的 , 即 (left + right )/2 = right = left 的。

        

为什么是正确的:

        二分算法是利用二段行进行查找的,这道题的二段性体现在数组是有序的。在暴力算法中,我们是一个个比较的,在二分算法中,我们是按区间比较的,即[ left , mid-1 ] 和 [ mid+1 , right]。

时间复杂度:

        我们只需要看循环了多少次即可,只要left <= right的时候,就进循环,当问题规模n就除2。

          当left == right的时候,数组中只剩下一个元素,所以执行x次后,问题规模就为1。

3. 代码展示

class Solution {
public:
    int search(vector<int>& nums, int target) {

        int left = 0;
        int right = nums.size() - 1;
        while(left <= right)
        {
            //优化:防止溢出
            int mid = left + (right - left)/2;
            if(nums[mid] == target)
            {
                return mid;
            }
            else if(nums[mid] > target)
            {
                right = mid - 1;
            }
            else{
                left = mid + 1;
            }
        }
        return -1;
    }
};

 📂 朴素二分模板

while(left <= right)
{
    //优化:防止溢出
    int mid = left + (right - left)/2
    if(...)
        left = mid + 1;
    else if(...)
        right = mid - 1;
    else
        return mid;
}

        mid = left + (right - left) /2 是进行了优化的,因为当left 和 right都很大时,很容易超出int类型的范围。mid = left + (right - left + 1) / 2在朴素二分模板中也是可以的。

        +1的区别在于,偶数个数时,是向上取整,还是向下取整。

向下取整:left + ( right - left ) / 2

向下取整:left + (right - left + 1) / 2

📁 查找区间端点处

34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode)

1. 题目解析

        依旧先从简单看起,暴力解法就是先从前往后遍历,找到第一个位置,如果找到,接着从后往前遍历,查找最后一个位置,范围begin和end。否则返回-1,-1。

        暴力解法的时间复杂度是O(N)的,但题目要求我们在O(logN)的时间复杂度。在基础算法中,很少有算法能优化的logN,二分算法就是其中之一。

        这道题目也是一道非常经典的二分查找算法,即查找区间的左端点,和区间的右端点。

2. 算法原理

        用的还是二分算法,即二段行,根据数据的性质,在某种判断条件下将区间一分为二(不一定是有序,有二段性即可。)舍去一个区间,在另一个区间内查找。

寻找左端点思路:

        左区间:[ left , result - 1 ] 都是严格小于 t 的。

        右区间: [ result , right ] 都是严格大于等于 t 的。

​​​​​​​

        因此,关于mid的落点,我们可以分为下面这两种情况:

        1. 当 mid 落在[ left , result - 1 ] 区间的时候,即 nums[mid] < t 。说明 [left , mid ]都是可以舍去的,此时更新left到mid+1的位置,继续在 [ mid +1 , right] 上寻找左边界。

        2. 当mid 落在[result , right]区间的时候,即 nums[mid] >= t。说明[mid +1 ,right]的区间可以社区(mid可能是最终结果,也可能不是),继续在[left,mid]上查找左端点。

注意的是,寻找左端点时,采用向下取整

        左指针的变化:left = mid + 1,区间逐渐减少。

        右指针的变化:right = mid ,可能会原地踏步。如果采用向上取整,可能会死循环,例如:t = 2 , mid = left + (right - left + 1)/2的话,right = mid,mid = right陷入死循环。

//查找区间左端点
int left =0;
int right = nums.size()-1;
while(left < right)
{
      int mid = left + (right - left)/2;
      if(nums[mid] >= target)
      {
          right = mid;
      }
      else
      {
          left = mid + 1;
      }
}

 寻找右端点思路:

       左区间:[ left , result ] 都是严格小于等与t的。

       右区间:[ result+1 , right ] 都是严格大于t的。

        1. 当mid落在左区间时,mid可能是最终结果,也可能不是,所以 left = mid,舍去区间[left,mid -1]。继续在区间[ mid , right]区间内查找。

        2. 当mid落在右区间时,可以舍去[mid , right]的区间,right = mid - 1。继续在区间[ left , mid -1 ]内查找。

注意的是,寻找右端点时,采用向上取整

        右指针的变化:right = mid - 1,区间逐渐减少。

        左指针的变化:left = mid,可能会原地踏步,采用向下取整,可能会陷入死循环。例如:t =1 ,mid = left + (right - left) / 2

//查找区间右端点
left = 0;
right = nums.size()-1;
while(left < right)
{
      int mid = left +(right-left+1)/2;
      if(nums[mid] <= target)
      {
          left = mid;
      }
      else
      {
          right = mid -1;
      }
}

细节(重要)

 (1) 循环条件 

                left < right。我们以寻找右端点为例:

        left的工作区间就是在小于等于t这个区间;right的工作区间就是在大于t这个区间。因为right = mid - 1,所以right跳出工作区间时,一定是在right == left的位置。

        所以不需要判断right是否等于left,是一定等于的。

​​​​​​​

(2) 求中点操作  

        其实,我们只需要记住,下面有-1的时候,上面就有+1,。其他的结合题意给出二段行的判断条件。

3. 代码展示

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        if(nums.size() == 0)
        {
            return {-1,-1};
        }

        //查找区间左端点
        int left =0;
        int right = nums.size()-1;
        while(left < right)
        {
            int mid = left + (right - left)/2;
            if(nums[mid] >= target)
            {
                right = mid;
            }
            else
            {
                left = mid + 1;
            }
        }
        if(nums[left] != target)
        {
            return {-1,-1};
        }

        int begin = left;

        //查找区间右端点
        left = 0;
        right = nums.size()-1;
        while(left < right)
        {
            int mid = left +(right-left+1)/2;
            if(nums[mid] <= target)
            {
                left = mid;
            }
            else
            {
                right = mid -1;
            }
        }
        int end = right;
        return {begin,end};
    }
};

 📂 区间左端点处模板

while(left < right)
{
    int mid = left + (right - left)/2;
    if(...) 
        left = mid + 1;
    else
        right = mid;
}

 📂 区间右端点处模板

while(left < right)
{
    int mid = left + (right - left)/2;
    if(...) 
        left = mid;
    else
        right = mid - 1;
}

        以上,就将二分算法的所有知识点讲解完毕,其中朴素二分模板是容易理解的,后面两个二分模板还是需要大家自己画图不断加强理解的。

        下面,我们通过几道习题加强理解。对于习题,不会再过多讲解知识点内容,而是直接给出题解思路,并配图加强理解和做题能力。

📁 习题

1. 35. 搜索插入位置 - 力扣(LeetCode)

        我们通过画图,可以看出来,这是一道非常经典的查找区间左端点的题,找到大于等于t的第一个点即可。        

        如果t不存在在数组中,则返回left+1(left 经过循环来到right这个位置,即最后一个位置)

class Solution {
public:
    int searchInsert(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size()-1;
        while(left < right)
        {
            int mid = left + (right - left) / 2;
            if(nums[mid] >= target)
                right = mid;
            else
                left = mid + 1;
        }
        return nums[left] < target ? left + 1:left;
    }
};

2. 69. x 的平方根 - 力扣(LeetCode)

        其实这道题,你用二分查找左端点,或者查找右端点都可以做出来。这里我们就以查找右端点为例,当然,也会展示左端点的解法。

        前面需要特殊判断x是否小于1,如果小于1,则返回0。

class Solution {
public:
    int mySqrt(int x) {
        if(x < 1)
        {
            return 0;
        } 
        int left = 1;
        int right = x;
        while(left < right)
        {
            long long mid = left + (right - left + 1)/2;
            if(mid * mid <= x)
                left = mid;
            else
                right = mid - 1;
        }
        return right;
    }
};

        以上是查找右端点的写法,当然也可以写成查找左端点。

        不过因为,查找左端点,数值是会比查找右端点大的多,所以,left 和 right都采用 long long类型。最后判断一下,right的平方是否等于x,如果不等于返回right-1。

class Solution {
public:
    int mySqrt(int x) {
        long long left = 0;
        long long right = x;
        while(left < right)
        {
            long long mid = left + (right - left) / 2;
            if(mid * mid < x)
            {
                left = mid + 1;
            }
            else    
            {
                right = mid;
            }
        }
        return right*right == x?right:right-1;
    }
};

        这道题,可以很好的理解二分法,即一道题往往不止一种解决方法。

3.153. 寻找旋转排序数组中的最小值 - 力扣(LeetCode)

        通过题意,可以了解的是,旋转就是将最后一个元素移动到最开始的位置。此外,还有一个重要条件就是 互不相同

        那我们就可以利用互不相同,得出二段行,如下图所示。

         因此,我么以D点的值为索引,

        当mid落在区间[A,B]时,left = mid + 1。[A,B]区间内的点是严格大于D点的值。

        当mid落在区间[C,D]时,right = mid。其中C点就是我们要求的点。C点的值是要个小于D点的值。当[C,D]区间内只有一个元素时,C点的值可能等于D点的值。

class Solution {
public:
    int findMin(vector<int>& nums) {
        int x = nums[nums.size()-1];
        int left = 0;
        int right = nums.size()-1;
        while(left < right)
        {
            int mid = left + (right - left ) / 2;
            if(nums[mid] > x)
            {
                left = mid + 1;
            }
            else
            {
                right = mid;
            }
        }
        return nums[right];
    }
};

4. LCR 173. 点名 - 力扣(LeetCode)        

        ​​​​​​​数组中,下标等于元素值,如果有一位同学缺席,那么它之后所有元素的下标就不等于元素的值。

        因此,我们只需要查找左端点即可。

        此外,这道题还需要注意的是,最后需要处理一下边界情况,如数组中仅有一个元素1,那么缺席的同学编号就是0;如果仅有一个元素0,那么缺席的同学编号为1。

class Solution {
public:
    int takeAttendance(vector<int>& records) {
        int left = 0;
        int right = records.size()-1;
        while(left < right)
        {
            int mid = left + (right - left) / 2;
            if(records[mid] == mid)
            {
                left = mid + 1;
            }
            else
            {
                right = mid;
            }
        }
        return records[right] == right?right+1:right;
    }
};

5. 852. 山脉数组的峰顶索引 - 力扣(LeetCode)

        这道题目,查找左端点或查找右端点都可以,这里我们就以查找右端点为例,不在讲解如何查找左端点,感兴趣可以自己实践一下。

​​​​​​​

        当mid处于上升区间时,在[mid + 1, right]区间查找。

        当mid处于下降区间时,在[left , mid - 1]区间查找。

class Solution {
public:
    int peakIndexInMountainArray(vector<int>& arr) {
        int left =0;
        int right = arr.size() -1;
        while(left < right)
        {
            int mid = left + (right - left)/2;
            if(arr[mid] < arr[mid+1])
            {
                left = mid +1;
            }
            else
            {
                right = mid ;
            }
        }
        return right;
    }
};

6.162. 寻找峰值 - 力扣(LeetCode)

 寻找⼆段性:

        1. 当arr[mid] > arr[mid+1],左侧一定存在山峰,到[left,mid]寻找山峰。

        2. 当arr[mid] < arr[mid+1],右侧一定存在山峰,到[mid+1,right]寻找。

class Solution {
public:
    int findPeakElement(vector<int>& nums) {
        int left =0;
        int right = nums.size()-1;
        while(left < right)
        {
            int mid = left +  (right - left) / 2;

            if(nums[mid] < nums[mid+1])
            {
                left = mid + 1;
            }
            else
            {
                right = mid;
            }
        }
        return left;
    }
};

📁 总结

        以上,我们就将二分算法带大家做了全面了解。二分算法的核心就是寻找二段性,有了二段性,直接套模板即可。对于模板,建议是理解着去背诵,效果更好。

        通过习题,我们也加强了对二分算法的理解,平时做题中,看到时间复杂度为logN的,我们应该敏锐的想到二分算法。

        以上就是本期【算法杂货铺】的主要内容了,如果感觉对你有帮助,欢迎点赞,收藏,关注。Thanks♪(・ω・)ノ

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋刀鱼的滋味@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值