自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1361)
  • 资源 (3)
  • 收藏
  • 关注

原创 YOLOv10有效改进系列及项目实战目录:卷积,主干 注意力,检测头等创新机制

本专栏不仅关注最新的研究成果,还会持续更新和回顾那些经过实践验证的改进机制。包括:注意力机制替换、卷积优化、检测头创新、损失与IOU优化、block优化与多层特征融合、轻量级网络设计等改进思路,帮助您实现全方位的创新。每篇文章都附带详细的步骤和源码,便于您的论文写作和项目实现。每周发布3-10篇最新创新机制文章,确保时刻掌握前沿内容。

2024-07-13 20:00:21 988 2

原创 YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

大家好!欢迎阅读本专栏。本专栏涵盖了YOLO8中C2f、主干网络、检测头、注意力机制、Neck等多种结构的创新,同时也包括了 YOLO相关的基础知识以及相关项目。

2024-05-06 10:20:34 28723 7

原创 【YOLOv8改进- 损失函数】 NWD(Normalized Wasserstein Distance:归一化 Wasserstein 距离),助力微小目标检测。

【YOLOv8改进- 损失函数】 NWD(Normalized Wasserstein Distance:归一化 Wasserstein 距离),助力微小目标检测。

2024-08-30 22:59:13 13358

原创 【YOLOv8改进- 多模块融合改进】ResBlock + GAM: 基于ResBlock的全局注意力机制ResBlock_ GAM

【YOLOv8改进- 多模块融合改进】ResBlock + GAM: 基于ResBlock的全局注意力机制ResBlock_ GAM,增强特证提取

2024-08-13 08:58:27 199

原创 【YOLOv8改进- 多模块融合改进】ResBlock + CBAM: 基于ResBlock的通道+空间注意力,增强特征提取

【YOLOv8改进- 多模块融合改进】ResBlock + CBAM: 基于ResBlock的通道+空间注意力,增强特证提取

2024-08-13 08:56:35 172

原创 【YOLOv8改进- 多模块融合改进】RFAConv+ TripletAttention: 基于感受野注意力卷积与三元注意力的四头小目标检测头,,提高特证提取的效率以及准确率。

【YOLOv8改进- 多模块融合改进】RFAConv+ TripletAttention: 基于感受野注意力卷积与三元注意力的四头小目标检测头,,提高特证提取的效率以及准确率。

2024-08-12 10:40:16 169

原创 【YOLOv8改进 - 注意力机制】 CAA: 上下文锚点注意力模块,处理尺度变化大或长形目标

【YOLOv8改进 - 注意力机制】 CAA: 上下文锚点注意力模块,处理尺度变化大或长形目标

2024-08-12 09:05:11 439

原创 【YOLOv8改进- 多模块融合改进】Non-Local+ LSKNet : 自注意力模型与空间选择注意力的融合改进,助力小目标检测高效涨点

【YOLOv8改进- 多模块融合改进】Non-Local+ LSKNet : 自注意力模型与空间选择注意力的融合改进,助力小目标检测高效涨点

2024-08-10 09:39:06 94

原创 【YOLOv8改进- 多模块融合改进】CPCA + CARAFE : 通道先验卷积注意力与上采样算子的融合改进,助力细节提升!

【YOLOv8改进- 多模块融合改进】CPCA + CARAFE : 通道先验卷积注意力与上采样算子的融合改进,助力细节提升!

2024-08-10 09:35:06 104

原创 YOLO8训练遇到的各种报错及解决方案

在Windows系统中,由于其多进程模型的特殊性,使用多进程加载数据时经常会遇到问题。在Linux系统中,通常可以使用多个子进程进行数据加载,但在Windows系统中必须将进程数设置为单进程来避免错误。此问题可能是当前使用的GPU正在被其他应用程序占用,导致显存不足。需要关闭其他应用程序以释放显存。这是由于Pillow版本问题,最新的10.0版本会产生上述问题。虽然调整后会在一定程度上影响模型的泛化能力并容易导致过拟合,但在必要时可以将。降低PyTorch和CUDA版本。使用device指定GPU。

2024-08-06 10:53:28 198

原创 【YOLOv8改进 - 注意力机制】 Agent Attention :代理注意力, softmax注意力与线性注意力的优雅融合

注意力模块是Transformer的关键组件。虽然全局注意力机制具有很高的表达能力,但其过高的计算成本限制了其在各种场景中的适用性。本文提出了一种新的注意力范式,称为Agent Attention,以在计算效率和表示能力之间取得有利的平衡。具体而言,Agent Attention表示为四元组(Q, A, K, V),在传统注意力模块中引入了一组额外的代理令牌A。代理令牌首先作为查询令牌Q的代理,从K和V中聚合信息,然后将信息广播回Q。

2024-08-05 10:56:01 241 4

原创 【YOLOv8改进- 多模块融合改进】发论文神器SPPF_LSKA,结合各种创新改进,以融合SimAM注意力机制为例!

【YOLOv8改进- 多模块融合改进】发论文神器SPPF_LSKA,结合各种创新改进,以融合SimAM注意力机制为例!

2024-07-25 15:35:30 498 3

原创 【YOLOv8改进 - 卷积Conv】DCNv3: 可变形卷积,结合稀疏注意力机制与卷积的创新算子

【YOLOv8改进 - 卷积Conv】DCNv3: 可变形卷积,结合稀疏注意力机制与卷积的创新算子

2024-07-25 14:29:48 757 4

原创 【YOLOv8改进 - SPPF】发论文神器!LSKA注意力改进SPPF,增强多尺度特征提取能力,高效涨点!!!

【YOLOv8改进 - SPPF】发论文神器!LSKA注意力改进SPPF,增强多尺度特征提取能力,高效涨点!!!

2024-07-25 11:22:39 1675

原创 【YOLOv8改进 - 卷积Conv】DCNv2: 可变形卷积,显式和隐式特征交互学习

【YOLOv8改进 - 卷积Conv】DCNv2: 可变形卷积,显式和隐式特征交互学习

2024-07-24 23:46:29 2007

原创 【YOLOv8改进- 多模块融合改进】BoTNet + CoordAttention 骨干网络与高效坐标注意力机制融合改进,助力小目标高效涨点

【YOLOv8改进- 多模块融合改进】BoTNet + CoordAttention 骨干网络与高效坐标注意力机制融合改进,助力小目标高效涨点

2024-07-24 22:58:40 1481

原创 【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点

卷积神经网络(CNNs)在计算机视觉中无处不在,具有众多高效的变体。最近,最初在自然语言处理(NLP)中引入的Transformers越来越多地被应用于计算机视觉领域。尽管早期采用者继续使用CNN骨干网络,但最新的网络是端到端的、无CNN的Transformer解决方案。一个最近令人惊讶的发现表明,基于简单多层感知机(MLP)的解决方案,即使没有传统的卷积或Transformer组件,也能生成有效的视觉表示。

2024-07-24 15:47:45 418

原创 【YOLOv8改进 - 注意力机制】ContextAggregation : 上下文聚合模块,捕捉局部和全局上下文,增强特征表示

卷积神经网络(CNNs)在计算机视觉中无处不在,具有众多高效的变体。最近,最初在自然语言处理(NLP)中引入的Transformers越来越多地被应用于计算机视觉领域。尽管早期采用者继续使用CNN骨干网络,但最新的网络是端到端的、无CNN的Transformer解决方案。一个最近令人惊讶的发现表明,基于简单多层感知机(MLP)的解决方案,即使没有传统的卷积或Transformer组件,也能生成有效的视觉表示。

2024-07-24 15:32:35 132

原创 【YOLOv8改进- 多模块融合改进】BoTNet + EMA 骨干网络与多尺度注意力的融合改进,小目标高效涨点

BoTNet + EMA 骨干网络与多尺度注意力的融合改进,小目标高效涨点

2024-07-24 09:56:01 362

原创 【YOLOv8改进- Backbone主干】BoTNet:基于Transformer,结合自注意力机制和卷积神经网络的骨干网络

我们提出了BoTNet,这是一种概念上简单但功能强大的骨干架构,结合了自注意力机制,用于图像分类、目标检测和实例分割等多个计算机视觉任务。通过仅在ResNet的最后三个瓶颈块中用全局自注意力替换空间卷积,并且没有其他更改,我们的方法显著提高了实例分割和目标检测的基线性能,同时减少了参数,且在延迟方面的开销极小。通过设计BoTNet,我们还指出带有自注意力的ResNet瓶颈块可以视为Transformer块。

2024-07-24 09:26:27 1781 5

原创 【YOLOv8改进 - 注意力机制】Gather-Excite : 提高网络捕获长距离特征交互的能力

虽然卷积神经网络(CNNs)中使用自下而上的局部操作符与自然图像的一些统计特性很好地匹配,但这也可能阻止这些模型捕捉上下文的长程特征交互。在这项工作中,我们提出了一种简单且轻量的方法,以更好地在CNNs中利用上下文信息。我们通过引入一对操作符来实现这一目标:聚集(gather),该操作符高效地聚合来自大空间范围的特征响应;激发(excite),将汇集的信息重新分配给局部特征。这些操作符在添加参数数量和计算复杂度方面都很便宜,并且可以直接集成到现有架构中以提高其性能。

2024-07-23 15:31:25 909

原创 【YOLOv8改进 - 注意力机制】EffectiveSE : 改进的通道注意力模块,减少计算复杂性和信息丢失

我们提出了一种简单而高效的无锚实例分割方法,称为CenterMask,它在无锚单阶段目标检测器(FCOS [33])中添加了一个新颖的空间注意力引导掩码(SAG-Mask)分支,类似于Mask R-CNN [9]。在FCOS目标检测器中插入SAG-Mask分支,该分支使用空间注意力图在每个检测框上预测分割掩码,从而有助于关注有用的像素并抑制噪声。我们还提出了改进的骨干网络VoVNetV2,并采用了两种有效策略:(1)残差连接以缓解较大VoVNet [19]的优化问题;

2024-07-23 14:43:08 1138

原创 【YOLOv8改进】ADown:轻量化下采样操作

当今的深度学习方法主要集中在如何设计最合适的目标函数,以使模型的预测结果尽可能接近真实值。同时,还需要设计一种合适的架构,以便获取足够的信息进行预测。现有的方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,会丢失大量信息。本文将深入探讨数据通过深度网络时的数据丢失这一重要问题,即信息瓶颈和可逆函数。我们提出了可编程梯度信息(PGI)的概念,以应对深度网络实现多重目标所需的各种变化。PGI可以为目标任务提供完整的输入信息,以计算目标函数,从而获得可靠的梯度信息来更新网络权重。

2024-07-22 23:14:28 837

原创 【YOLOv8改进 - 特征融合】FFCA-YOLO: 提升遥感图像中小目标检测的精度和鲁棒性

在遥感中,小物体的检测任务由于特征表示不足和背景混淆等问题而变得艰难。特别是当算法需要部署在板载系统上进行实时处理时,需在有限的计算资源下进行准确性和速度的广泛优化。为了解决这些问题,本文提出了一种高效的检测器,称为特征增强、融合和上下文感知YOLO(FFCA-YOLO)。FFCA-YOLO包含三个创新的轻量级和即插即用的模块:特征增强模块(FEM)、特征融合模块(FFM)和空间上下文感知模块(SCAM)。这三个模块分别增强了网络的局部区域感知、多尺度特征融合和全局关联跨通道与空间的能力,同时尽量避免增加复

2024-07-22 22:15:05 667

原创 【YOLOv8改进 -注意力机制】SGE(Spatial Group-wise Enhance):轻量级空间分组增强模块

卷积神经网络(CNNs)通过收集语义子特征的层次化和不同部分来生成复杂对象的特征表示。这些子特征通常可以在每层特征向量中以分组形式分布,代表各种语义实体 [43, 32]。然而,这些子特征的激活往往受到相似模式和噪声背景的空间影响,导致错误的定位和识别。我们提出了一种空间分组增强(SGE)模块,通过为每个语义组中的每个空间位置生成注意力因子来调整每个子特征的重要性,从而使每个单独的组能够自主增强其学习到的表达并抑制可能的噪声。

2024-07-20 09:27:23 1087

原创 【YOLOv8改进 - 注意力机制】GC Block (GlobalContext): 全局上下文块,高效捕获特征图中的全局依赖关系

【YOLOv8改进 - 注意力机制】GC Block (GlobalContext): 全局上下文块,高效捕获特征图中的全局依赖关系

2024-07-18 17:11:21 797

原创 【YOLOv8改进-SPPF】 AIFI : 基于注意力的尺度内特征交互,保持高准确度的同时减少计算成本

YOLO系列因其在速度和准确性之间的合理权衡,成为了实时目标检测中最受欢迎的框架。然而,我们观察到YOLO的速度和准确性受NMS(非极大值抑制)的负面影响。最近,基于Transformer的端到端检测器(DETRs)提供了一种消除NMS的替代方案,但其高计算成本限制了其实用性,并阻碍了其完全利用排除NMS的优势。在本文中,我们提出了实时检测Transformer(RT-DETR),据我们所知,这是第一个解决上述困境的实时端到端目标检测器。

2024-07-17 17:19:45 1143

原创 【YOLOv8改进 - 特征融合NECK】SDI:多层次特征融合模块,替换contact操作

在本文中,我们介绍了U-Net v2,一种用于医学图像分割的新型、稳健且高效的U-Net变体。它旨在增强语义信息在低级特征中的注入,同时精细化高级特征的细节。对于输入图像,我们首先通过深度神经网络编码器提取多层次特征。接下来,我们通过从高级特征中注入语义信息,并通过Hadamard积整合来自低级特征的更精细细节,来增强每一层的特征图。我们新颖的跳跃连接使所有层次的特征都具备丰富的语义特征和复杂的细节。改进后的特征随后被传递到解码器进行进一步处理和分割。我们的方法可以无缝集成到任何编码器-解码器网络中。

2024-07-17 16:13:35 964

原创 【YOLOv8改进】HWD: Haar小波降采样,用于语义分割的降采样模块,减少特征图的空间分辨率

下采样操作,如最大池化或步幅卷积,被广泛应用于卷积神经网络(CNN)中,用于聚合局部特征、扩大感受野和最小化计算开销。然而,对于语义分割任务,在局部邻域内进行池化特征可能会导致重要空间信息的丧失,而这些信息对于逐像素的预测是有帮助的。为了解决这个问题,我们引入了一种简单但有效的池化操作,称为基于Haar小波的下采样(HWD)模块。该模块可以轻松集成到CNN中,以提高语义分割模型的性能。HWD的核心思想是应用Haar小波变换来降低特征图的空间分辨率,同时尽可能保留信息。

2024-07-16 23:25:49 1000

原创 【YOLOv8改进 - 注意力机制】DoubleAttention: 双重注意力机制,全局特征聚合和分配

学习捕捉远程关系是图像/视频识别的基础。现有的CNN模型通常依赖于增加深度来建模这种关系,这效率极低。在这项工作中,我们提出了“双重注意力块”,这是一个新颖的组件,它从输入图像/视频的整个时空空间聚合和传播有用的全局特征,使后续的卷积层能够高效地访问整个空间的特征。该组件设计了两个步骤的双重注意力机制,第一步通过二阶注意力池化将整个空间的特征聚集到一个紧凑集,第二步通过另一个注意力自适应地选择和分配特征到每个位置。提出的双重注意力块易于采用,可以方便地插入现有的深度神经网络中。

2024-07-16 22:51:04 634 4

原创 【YOLOv8改进 - 注意力机制】S2Attention : 整合空间位移和分割注意力

最近,基于MLP的视觉骨干网络开始出现。与CNN和视觉Transformer相比,具有较少归纳偏差的MLP架构在图像识别中表现出竞争力。其中,采用直接空间移位操作的空间移位MLP(S2-MLP)比包括MLP-mixer和ResMLP在内的早期工作取得了更好的性能。最近,使用较小的补丁和金字塔结构,Vision Permutator(ViP)和Global Filter Network(GFNet)在性能上超过了S2-MLP。本文中,我们改进了S2-MLP视觉骨干网络。

2024-07-16 17:28:07 614

原创 【YOLOv8改进 - 特征融合】 GELAN:YOLOV9 通用高效层聚合网络,高效且涨点

当前的深度学习方法主要关注如何设计最合适的目标函数,以使模型的预测结果尽可能接近真实值。同时,还需设计合适的架构,以便获取足够的信息用于预测。现有方法忽略了一个事实:当输入数据经过逐层特征提取和空间变换时,会丢失大量信息。本文将深入探讨数据通过深度网络传输时的数据丢失这一重要问题,即信息瓶颈和可逆函数。我们提出了可编程梯度信息(PGI)的概念,以应对深度网络实现多重目标所需的各种变化。PGI可以为目标任务提供完整的输入信息,以计算目标函数,从而获得可靠的梯度信息来更新网络权重。

2024-07-16 10:49:56 355

原创 【YOLOv8改进 - 特征融合NECK】 GIRAFFEDET之GFPN :广义特征金字塔网络,高效地融合多尺度特征

在传统的目标检测框架中,通常采用从图像识别模型继承的主干网络来提取深层潜在特征,然后通过颈部模块融合这些潜在特征,以捕捉不同尺度的信息。由于目标检测中的分辨率远高于图像识别,主干网络的计算成本往往占据总推理成本的主要部分。这种重型主干设计范式主要是由于将图像识别模型转移到目标检测中时的历史遗留,而不是针对目标检测进行的端到端优化设计。在本研究中,我们表明这种范式确实导致了次优的目标检测模型。为此,我们提出了一种新颖的重型颈部范式,GiraffeDet,这是一种类长颈鹿的高效目标检测网络。

2024-07-16 10:33:56 646

原创 【YOLOv8改进 - 注意力机制】RCS-OSA :减少通道的空间对象注意力,高效且涨点

摘要. 凭借出色的速度和准确性平衡,最前沿的YOLO框架已经成为目标检测最有效的算法之一。然而,使用YOLO网络进行脑肿瘤检测的性能鲜有研究。我们提出了一种基于通道Shuffle重参数化卷积的YOLO新架构(RCS-YOLO)。我们介绍了RCS和RCS的一次性聚合(RCS-OSA),将特征级联和计算效率结合起来,以提取更丰富的信息并减少时间消耗。在脑肿瘤数据集Br35H上的实验结果表明,所提出的模型在速度和准确性上超越了YOLOv6、YOLOv7和YOLOv8。

2024-07-16 09:57:42 756

原创 【YOLOv8改进 - 注意力机制】Focused Linear Attention :全新的聚焦线性注意力模块

自注意力的二次计算复杂性在将Transformer模型应用于视觉任务时一直是一个持久的挑战。相比之下,线性注意力通过精心设计的映射函数来近似Softmax操作,提供了更高效的替代方案,其计算复杂性为线性。然而,目前的线性注意力方法要么遭受显著的性能下降,要么因映射函数引入了额外的计算开销。在本文中,我们提出了一种新颖的聚焦线性注意力模块,以实现高效率和高表现力。具体来说,我们首先从聚焦能力和特征多样性两个角度分析了线性注意力性能下降的因素。

2024-07-16 09:43:24 784

原创 【YOLOv8改进-SPPF】 Focal Modulation :使用焦点调制模块替代SPPF

我们提出了焦点调制网络(简称FocalNets),在其中完全用焦点调制模块替代了自注意力(SA),用于建模视觉中的标记交互。焦点调制由三个组件组成:(i)焦点上下文化,通过一系列深度卷积层实现,从短距离到长距离编码视觉上下文,(ii)门控聚合,选择性地将上下文聚合到每个查询标记的调制器中,以及(iii)逐元素仿射变换,将调制器注入查询标记。

2024-07-16 09:18:13 804

原创 【YOLOv8改进- Backbone主干】YOLOv8更换主干网络之ConvNexts,纯卷积神经网络,更快更准,,降低参数量!

视觉识别的“咆哮20年代”开始于视觉Transformer(ViTs)的引入,ViTs迅速取代了卷积神经网络(ConvNets)成为最先进的图像分类模型。然而,普通的ViT在应用于诸如目标检测和语义分割等一般计算机视觉任务时面临困难。分层Transformer(例如Swin Transformer)重新引入了几种ConvNet先验知识,使得Transformer在实际应用中成为通用的视觉骨干,并在各种视觉任务中表现出色。

2024-07-15 23:19:08 1043

原创 【YOLOv8改进- Backbone主干】YOLOv8 更换主干网络之EfficientNet,高效的卷积神经网络,降低参数量

卷积神经网络(ConvNets)通常在固定的资源预算下开发,如果有更多资源可用,则会进行扩展以提高准确性。在本文中,我们系统地研究了模型扩展,并发现仔细平衡网络的深度、宽度和分辨率可以带来更好的性能。基于这一观察,我们提出了一种新的扩展方法,使用一个简单但非常有效的复合系数均匀扩展深度、宽度和分辨率的所有维度。我们展示了这种方法在扩展MobileNets和ResNet时的有效性。

2024-07-15 23:00:05 1179

原创 【YOLOv8改进- Backbone主干】YOLOv8 更换主干网络之 PP-LCNet,轻量级CPU卷积神经网络,降低参数量

我们提出了一种基于MKLDNN加速策略的轻量级CPU网络,命名为PP-LCNet,它在多项任务中提高了轻量级模型的性能。本文列出了在延迟几乎不变的情况下能够提高网络准确性的技术。通过这些改进,PP-LCNet在相同推理时间内的分类准确性可以大大超过之前的网络结构。如图1所示,它的性能优于最先进的模型。在计算机视觉的下游任务中,如目标检测、语义分割等,它也表现得非常出色。我们所有的实验都是基于PaddlePaddle1进行的。代码和预训练模型可在PaddleClas2中找到。

2024-07-15 22:24:28 1218

原创 【YOLOv8改进 -注意力机制】Mamba之MLLAttention :基于Mamba和线性注意力Transformer的模型

Mamba是一种具有线性计算复杂度的有效状态空间模型。它最近在处理各种视觉任务的高分辨率输入方面表现出了令人印象深刻的效率。在本文中,我们揭示了强大的Mamba模型与线性注意力Transformer共享令人惊讶的相似性,而线性注意力Transformer在实践中通常不如传统Transformer。通过探索高效的Mamba和表现欠佳的线性注意力Transformer之间的相似性和差异,我们提供了全面的分析,揭示了Mamba成功背后的关键因素。

2024-07-13 20:51:41 199

MCA: Multidimensional collaborative attention in deep convolutio

MCA: Multidimensional collaborative attention in deep convolutional neural networks for image recognition MCA:用于图像识别的深度卷积神经网络中的多维协作注意力

2024-02-21

泰坦尼克号幸存者数据集

数据已被分为两组: - 训练集(train.csv) - 测试集(test.csv) 特征 | 变量 | 定义 | 键 | | ------- | ------------------------ | ----------------------- | | survival | 幸存 | 0 = 否, 1 = 是 | | pclass | 船票等级 | 1 = 一等, 2 = 二等, 3 = 三等 | | sex | 性别 | | | Age | 年龄 | | | sibsp | 泰坦尼克号上的兄弟姐妹/配偶数 | | | parch | 泰坦尼克号上的父

2023-12-17

K最近邻(K-Nearest Neighbors,KNN) 最佳指南以及代码实战数据集- 糖尿病

【零基础学机器学习 14】 K最近邻(K-Nearest Neighbors,KNN) 最佳指南以及代码实战 https://blog.csdn.net/shangyanaf/article/details/132955856

2023-09-17

《混淆矩阵 最佳指南以及代码实战》 心脏数据集

【零基础学机器学习 13】 混淆矩阵 最佳指南以及代码实战 https://blog.csdn.net/shangyanaf/article/details/132713468

2023-09-06

文章《【零基础学机器学习 10】随机森林算法最佳指南以及代码实战》 - 数据集

文章链接;https://blog.csdn.net/shangyanaf/article/details/131639945

2023-07-24

微信小程序-飞机大战 完美可用

微信小程序办的飞机大战,使用开发者打开,直接运行!

2023-02-26

asp.net通讯录管理系统课程设计

程序开发语言: .net + c# 数据库: access 适合课程设计 实现了管理登陆 通讯信息的crud(create read update delete)操作

2023-02-26

企业网站模板、html模板网站

免费网站模板、企业网站模板、html模板网站、公司网站模板、手机网站模板、自适应网站模板等免下载使用,覆盖全行业,0门槛建网站。一站式解决建站需求,功能强大,seo优化简单,收录快。网站源码 HTML CSS JavaScript 免费模板 个人简历 在线招聘 企业宣传 介绍 行业模板 前端开发 前端作业 大学生 网站设计

2022-11-26

100++ 前端网站模板 免费

100++ 前端网站模板 下载就能用 前端大作业 Html javascript css 模板 网站页面 免费 资源 完全免费 前端 网站

2022-05-05

最新版蚂蚁前端核心面经

最新版蚂蚁前端核心面经

2021-08-04

Make it Native 9_1.0.6.apk

mendix native app开发工具

2021-08-04

软件过程与管理实验

软件过程与管理

2018-06-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除