强化学习算法与马尔可夫决策过程

57、关于ES算法,选择正确的一项:( )A. ES算法在每一代中生成多个�(�)(0 ≤ � < �)作为策略参数�的变化。B. ES算法在每一代中生成多个�(�)(0 ≤ � < �)作为价值参数w的变化。C. ES算法在每一代中生成多个�(�)�和�(�)w(0 ≤ � < �)作为策略参数�和价值参数w的变化。

A

58、与基于策略的无梯度算法相比,选择正确的一项:( )A. 策略梯度算法倾向于更彻底地探索。B. 策略梯度算法倾向于有更好的样本效率。C. 策略梯度算法更适合并行计算。

B

59、以下哪种类型的强化学习算法与分布强化学习算法最为契合:( )A. 最优值强化学习算法。B. 策略梯度强化学习算法。C. 演员 - 评论家强化学习算法。

A

60、考虑一个连续随机变量 �。其概率密度函数为 �,分位数函数为 �。则其期望满足:( )A. E[�] = E[�(�)]。B. E[�] = E�∼均匀分布[0,1][�(�)]。C. E[�] = E[�(�)] 且 E[�] = E�∼均匀分布[0,1][�(�)]。

B

61、关于分布式强化学习算法,选择正确的一项:( )A. 分类深度Q网络(Categorical DQN)和分位数回归深度Q网络(QR - DQN)试图最小化分位数回归Huber损失。B. 分类深度Q网络(Categorical DQN)和隐式分位数网络(IQN)试图最小化分位数回归Huber损失。C. 分位数回归深度Q网络(QR - DQN)和隐式分位数网络(IQN)试图最小化分位数回归Huber损失。

C

62、关于分布强化学习算法,选择正确的一项:( )A. 类别深度Q网络(Categorical DQN)随机采样多个累积概率值进行决策。B. 分位数回归深度Q网络(QR - DQN)随机采样多个累积概率值进行决策。C. 隐式分位数网络(IQN)随机采样多个累积概率值进行决策。

C

63、在类别深度Q网络(Categorical DQN)中,当类别分布的支持集形式为�(�) = �(0) + �△�(�∈I)时,从�( �) = �+ ��( �) (�∈I)到�(�) (�∈I)的投影比率是:( )A. clip[�( �) −�(�)△�, 0, 1] B. 1 −clip[�( �) −�(�)△�, 0, 1] C. 1 −clip[clip[�( �),�(0),�(|I|−1)]−�(�)△�, 0, 1]

C

64、在分布式强化学习算法中引入概率分布有什么优势?

在一些任务中,仅考虑期望值不足以全面考量任务,整个分布有助于做出更明智的决策。具体而言,一些任务不仅希望最大化回合奖励的期望值,还希望优化由整个分布决定的效用或统计风险(例如,尽量减小标准差),在这些情况下,考虑整个分布具有优势。

65、哪些强化学习算法可以最大化效用或最小化统计风险?为什么这些算法可以做到这一点?

  • 可以最大化效用或最小化统计风险的RL算法是 分布强化学习(distributional RL)算法 ,包括:
  • 最大效用RL(Maximum Utility RL)
  • Categorical Deep Q Network (C51) 算法
  • Quantile Regression Deep Q Network (QR-DQN) 算法
  • Implicit Quantile Network (IQN) 算法

  • 这些算法可以做到这一点是因为它们维护了动作值随机变量的整个分布,而不仅仅是期望值。

  • 在一些任务中,仅考虑期望值不足以全面考虑任务,整个分布有助于做出更明智的决策,例如一些任务不仅希望最大化奖励的期望值,还希望优化由整个分布决定的效用或统计风险(如最小化标准差)。

66、以下哪个性能指标在在线强化学习(RL)任务中特别受关注:( )A. 后悔值。B. 收敛速度。C. 样本复杂度。

A

67、关于后悔值,选择正确的一项:( )A. 后悔值是在线学习任务的重要性能指标。B. 后悔值是离线学习任务的重要性能指标。C. 后悔值是在线学习任务和离线学习任务的重要性能指标。

A

68、关于UCB,选择正确的一项:( )A. UCB算法只能用于有界奖励的任务。B. UCB1算法只能用于有界奖励的任务。C. 贝叶斯UCB算法只能用于有界奖励的任务。

B

69、以下哪种算法使用了贝叶斯方法:( )A. � - 贪心算法。B. UCB 算法。C. 贝叶斯 UCB 算法。

C

70、在多臂老虎机(MAB)问题中,选择正确的一项:( )A. 每一个臂的奖励分布是独立同分布的。B. 伯努利奖励多臂老虎机的奖励总是在[0, 1]范围内。C. 当使用贝叶斯UCB算法解决伯努利奖励多臂老虎机任务时,我们通常假设先验分布是伯努利分布。

B

71、关于有限马尔可夫决策过程(MDP)的上置信界值迭代(UCBVI)算法,选择正确的一项:( ) A. UCBVI算法需要知道环境的动态信息。 B. UCBVI算法是一种基于模型的算法。 C. UCBVI算法可以保证有限MDP的遗憾为 �( �max|S| √(|A|��max) )。

B

72、什么是后悔值?为什么在线强化学习关注后悔值?

后悔值定义为训练过程中各回合后悔值的总和,其中回合后悔值是训练完成后实际回合奖励与最优回合奖励之间的差值,我们倾向于较小的后悔值。 </

【源码免费下载链接】:https://renmaiwang.cn/s/6hcxp 在C语言中,链表是一种常见的数据结构,用于存储动态数据集合。在这个“基于C的简单链表合并2排序程序”中,我们需要处理两个已经排序的链表,a和b,每个链表的节点包含学号(假设为整型)和成绩(也假设为整型)。目标是将这两个链表合并成一个新的链表,并按照学号的升序排列。我们来了解一下链表的基本概念。链表不同于数组,它不连续存储数据,而是通过指针将各个节点连接起来。每个节点通常包含两部分:数据域(存储学号和成绩)和指针域(指向下一个节点)。要实现这个合并和排序的过程,我们可以遵循以下步骤:1. **定义链表节点结构体**: 创建一个结构体类型,如`Node`,包含学号(score_id)和成绩(grade)字段,以及一个指向下一个节点的指针(next)。```ctypedef struct Node { int score_id; int grade; struct Node* next;} Node;```2. **初始化链表**: 在程序开始时,创建a和b链表的头节点,并确保它们的初始状态为空。3. **读取链表数据**: 从输入文件(假设为11.8中的文件)中读取数据,根据学号和成绩创建新的节点,并将其添加到相应的链表a或b中。这一步可能需要使用`fscanf`函数从文件中读取数据,并使用`malloc`分配内存创建新节点。4. **合并链表**: 合并两个链表的关键在于找到合适的位置插入b链表的节点。从头节点开始遍历a链表,比较当前节点的学号b链表头节点的学号。如果b链表的学号更小,就将b链表的头节点插入到a链表的当前节点后面,然后继续比较b链表的新头节点(原头节点的下一个节点)a链表的当前节点。当b链表为空或所有节点都已插入a链表时,合并完成。5. **排序链表**: 由于我们合并的时候
【源码免费下载链接】:https://renmaiwang.cn/s/0gh4u :“bp神经网络实现的iris数据分类”在机器学习领域,BP(Backpropagation)神经网络是一种广泛应用的监督学习算法,它主要用于解决非线性分类和回归问题。本项目实现了利用BP神经网络对鸢尾花(Iris)数据集进行分类。鸢尾花数据集是UCI机器学习库中的经典数据集,包含了三种不同鸢尾花品种的多个特征,如花瓣长度、花瓣宽度、萼片长度和萼片宽度,总计150个样本。:“bp神经网络实现的iris数据分类,UCI上下载的iris数据,适当调整误差精度,分类正确率可达到99%”我们需要理解UCI机器学习库中的Iris数据集。这个数据集由生物学家Ronald Fisher在1936年收集,是用于多类分类的典型实例。它包含3种鸢尾花(Setosa, Versicolour, Virginica)的4个特征,每种花有50个样本。在使用BP神经网络进行分类时,我们通常会先对数据进行预处理,包括数据清洗、标准化或归一化,以确保输入层的数值在同一尺度上。BP神经网络的核心在于反向传播算法,它通过计算预测值真实值之间的误差,并将误差从输出层向输入层逐层反向传播,调整权重以减小误差。在训练过程中,我们通常设置学习率、迭代次数以及停止训练的阈值,以达到最佳性能。在这个项目中,通过对误差精度的适当调整,使得网络能够在训练完成后对鸢尾花的分类准确率高达99%,这表明网络具有很好的泛化能力。【详细知识点】:1. **BP神经网络**:由输入层、隐藏层和输出层组成,通过梯度下降法和链式法则更新权重,以最小化损失函数。2. **鸢尾花数据集(Iris dataset)**:包含了150个样本,每个样本有4个特征和1个类别标签,常用于分类任务的基准测试。3. **特征工程**:预处理数据,可能包括缺失值处理、异常值检测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值