用于合成孔径雷达(SAR)图像检索的单应性增强动量对比学习
1. 引言
近年来,深度学习在合成孔径雷达(SAR)图像分析任务中得到了广泛应用,如目标检测、去斑、光学数据融合和地形表面分类等。其中,SAR 图像检索是一项重要的应用,其目标是从大型数据库中检索出与查询图像相似的图像,这在全球定位系统(GPS)不可用时可辅助导航系统。
在 SAR 图像检索任务中,常见的基本步骤是从给定的 SAR 图像中提取压缩特征向量,同时保留语义信息,然后将该向量与数据库中 SAR 图像的特征向量进行比较。这种技术有时被称为全局描述符方法,全局描述符是具有规定维度的简单向量,在测试时可以方便且可扩展地测量向量之间的距离。这些全局描述符向量通常使用卷积神经网络(CNNs)从图像中提取。
然而,这种技术的整体性能可能会受到杂波、光照和遮挡等因素的影响,这些因素会阻碍 CNN 生成准确的全局描述符向量。为克服这些障碍,也有人提出了基于 CNN 的局部特征方法,这些方法提供关键点及其相应的局部描述符。虽然这种方法提高了图像检索的性能,但比较图像对的可扩展性较差,因此不能有效地应用于大规模数据库。
目前,相关研究通常致力于开发一种基于 CNN 的方法,该方法结合全局描述符和局部特征技术,先使用全局描述符大致检索图像,然后利用局部特征方法对检索到的图像进行重新排序。
本文主要关注基于 CNN 的全局描述符方法,重点是开发一种对比学习方法来生成 SAR 图像的全局描述符。对比学习使用两个神经网络,并通过损失函数比较全局描述符。为防止网络生成平凡的描述符,应用单应性变换来增强 SAR 图像。单应性变换可以概括 SAR 图像的变形,因此经过单应性变换的 SAR 图像被用作训练网