65、证明任何 PSPACE 难的语言也是 NP 难的。
已知 $ \text{NP} \subseteq \text{PSPACE} $,对于任意语言 $ A \in \text{NP} $,因为 $ A \in \text{PSPACE} $。
又因为存在 $ \text{PSPACE} $ 难的语言 $ B $,根据 $ \text{PSPACE} $ 难的定义,所有 $ \text{PSPACE} $ 中的语言都能在多项式时间内归约到 $ B $。
所以 $ A $ 能在多项式时间内归约到 $ B $,这就满足了 $ \text{NP} $ 难的定义。
从而证明了:任何 $ \text{PSPACE} $ 难的语言也是 $ \text{NP} $ 难的。
66、证明 NL(非确定对数空间)在并、连接和星号运算下是封闭的。
以下是将给定文本内容调整为Markdown格式的结果:
证明NL在并、连接和星号运算下封闭通常需要利用非确定图灵机的性质和模拟构造等方法。
- 证明并运算封闭 :可构造一个非确定图灵机,它非确定地选择模拟识别两个语言的非确定图灵机之一。
- 证明连接运算封闭 :可先非确定地找到输入字符串的一个划分,然后依次模拟识别两个语言的非确定图灵机。
- 证明星号运算封闭 :可通过非确定地将输入字符串划分为若干段,并依次模拟识别原语言的非确定图灵机。
67、设 EQREX = {⟨R, S⟩| R 和 S 是等价的正则表达式}。证明 EQREX 属于 PSPACE。
我们能够在多项式空间内测试两个正则表达式的等价性,所以 EQREX 属于 PSPACE。
68、证明如果每个NP难语言也是PSPACE难的,那么PSPACE = NP。
若每个NP难语言都是PSPACE难的,由于NP难语言是NP中最难的语言,P