笔记——线段树

蓝月の笔记——线段树篇

在树状数组中,我们讲解了关于单点修改区间查询的操作。今天,我们要讲一种更加高级的数据结构,他解决的是区间修改区间查询的问题多了一个区间当然更高级啦

这个数据结构就是——线段树

Luogu - P3372

给定一个长度为 n n n 的序列 a 1 , a 2 , ⋯   , a n a_1,a_2,\cdots,a_n a1,a2,,an 和两种操作:

  1. 输入 1 l r k,将 [ l , r ] [l,r] [l,r] 区间里的每一个数加上 x x x
  2. 输入 2 l r,求 ∑ i = l r a i \sum_{i=l}^{r}a_i i=lrai

这就是区间修改区间查询

正片开始

先看图

【图片来源:OI-Wiki

这就是线段树的建出来的树。所以我们就讲完了(逃

注意:线段树是一颗二叉树

所以讲解函数之前,我们要了解二叉树的子节点查看方法。

观察图,我可以看出: 1 1 1 的子节点是 2 ( 1 × 2 ) 2(1 \times 2) 2(1×2) 3 ( 1 × 2 + 1 ) 3(1 \times 2 + 1) 3(1×2+1) 2 2 2 的子节点是 4 ( 2 × 2 ) 4(2 \times 2) 4(2×2) 5 ( 2 × 2 + 1 ) 5(2 \times 2 + 1) 5(2×2+1) 3 3 3 的子节点是 6 ( 3 × 2 ) 6(3 \times 2) 6(3×2) 7 ( 3 × 2 + 1 ) 7(3 \times 2 + 1) 7(3×2+1)

以此类推,我们知道:编号为 i i i 的非叶子节点, i i i 的左儿子编号为 2 × i 2 \times i 2×i,右儿子编号为 2 × i + 1 2 \times i + 1 2×i+1。用程序写出来就是:

int ls(int x) {
  return x << 1;
}
int rs(int x) {
  return x << 1 | 1;
}

这时候就有小朋友会问了,为什么这里会用到左移呢?

左移操作就是在二进制最后在加上一个 0 0 0,那每一个 1 1 1 都往前了一位,所以每个 1 1 1 代表的十进制数,就变成了原来的 2 2 2 倍。

因为左移完了之后最后一位必定为 0 0 0,将 0 0 0 或上 1 1 1,得到 1 1 1,这样我们就把最末尾的 0 0 0 改成了 1 1 1,所以就加上了 1 1 1

所以 x < < 1 = 2 × x , x < < 1 ∣ 1 = 2 × x + 1 x << 1 = 2 \times x,x << 1 | 1 = 2 \times x + 1 x<<1=2×x,x<<1∣1=2×x+1

因为二叉树的节点个数接近于 4 n 4n 4n,所以线段树

要开四倍空间!

要开四倍空间!!

要开四倍空间!!!

某位曹姓巨佬就因为没开四倍空间而挂掉。

为了方便,在下文的讲解和代码中,会采用以下名称:

  • t t t 数组,即线段树数组;
  • a a a 数组,即初始数组;
  • t a g tag tag 数组,即存储 tag \text{tag} tag 的数组;
  • n n n,即初始数组的大小;
  • x x x,当前遍历到的节点编号;
  • l l l,当前遍历到的区间左端点;
  • r r r,当前遍历到的区间右端点;
  • m i d mid mid,当前遍历到的区间中点;
  • u l ul ul,要修改的区间左端点;
  • u r ur ur,要修改的区间右端点;
  • x x x,要修改区间要加上的值;
  • q l ql ql,要查找的区间左端点;
  • q r qr qr,要查找的区间右端点。

接下来,我们就一个一个的来看线段树里面的函数吧!

PushUp \text{PushUp} PushUp

不多说,最简单也是最短的一个函数。

因为非叶子节点的和就是它的两个子节点的和,所以我们要把子节点的和上传到父亲节点。

代码:

void PushUp(int x) {
  t[x] = t[ls(x)] + r[rs(x)];
}

Build \text{Build} Build

从名字可以看出,就是建树,但是在建的过程中,还要将 tag \text{tag} tag 初始化一下。至于 tag \text{tag} tag 是什么,等我们讲到 AddTag \text{AddTag} AddTag 的时候再说。

我们来看建树的具体步骤:

  1. 初始化 tag \text{tag} tag 0 0 0
  2. 如果当前节点只有一个数,那么直接更新;
  3. 继续遍历左右儿子;
  4. PushDown \text{PushDown} PushDown 更新 t x t_x tx

代码:

void Build(LL x, LL l, LL r) {
  tag[x] = 0;
  if (l == r) {
    t[x] = a[l];
    return;
  }
  LL mid = (l + r) >> 1;
  Build(ls(x), l, mid), Build(rs(x), mid + 1, r);
  PushUp(x);
}

ex_Update \text{ex\_Update} ex_Update

看到标题,就有小朋友会问了:“啊你这普通 Update \text{Update} Update 还没讲就来讲加强版干什么啊?”

我只想说,这里的 ex \text{ex} ex 不是指的加强,而是:恶心!

你想,你不用线段树暴力求解,你的 Update \text{Update} Update 的复杂度是 O ( r − l + 1 ) O(r-l+1) O(rl+1) 也就是 O ( n ) O(n) O(n)

但是你用这个 KaTeX parse error: Expected 'EOF', got '_' at position 9: \text{ex_̲Update} 来修改的话,复杂度是 O ( n log ⁡ n ) O(n \log n) O(nlogn),还不如暴力。

接下来,我们就来学习一下这个没用KaTeX parse error: Expected 'EOF', got '_' at position 9: \text{ex_̲Update}

遍历到 x x x 这个区间时,有 2 2 2 种情况。

  1. 要修改的区间完全不在当前区间里,即 l > ur || r < ul,如果是这样直接跳过。
  2. 否则将这个区间加上它与要修改的区间重合部分乘要修改的值。

代码:

因为这个东西过于 ex \text{ex} ex,所以它被 KaTeX parse error: Expected 'EOF', got '_' at position 17: …texttt{BLuemoon_̲} 删掉了。

AddTag \text{AddTag} AddTag

tag \text{tag} tag 就是解决 KaTeX parse error: Expected 'EOF', got '_' at position 9: \text{ex_̲Update} 方法。

tag \text{tag} tag,全名 lazy-tag \text{lazy-tag} lazy-tag,懒标记。

tag \text{tag} tag 如其名,这就是为懒人准备的。

有多懒呢,你要更新一个区间,按道理你应该把这个节点的所有子节点,子节点的子节点,子节点的子节点的子节点……,全部遍历一遍,这就是 KaTeX parse error: Expected 'EOF', got '_' at position 9: \text{ex_̲Update} 为什么复杂度甚至高于暴力的原因。

我们给某个点打上懒标记,并标记上此时的 k k k 是多少,然后把这个区间加上它应该加的就行了。

注意:这里的 tag \text{tag} tag 应该使用 += 来更新,因为它可能原来还有没有下穿的懒标记

代码:

void AddTag(int x, int l, int r, int p) {
  tag[x] += p, t[x] += p * (r - l + 1);
}

PushDown \text{PushDown} PushDown

下传懒标记。

如果这个点被标记了,那么它的所有子孙节点都应该加上对应的数,而我们只改了 t x t_x tx 的值,所以我们要不懒标记下传。步骤如下:

  1. 如果这个点没有懒标记,直接返回。
  2. 把左右儿子全部打上一样的懒标记。
  3. 把自己的懒标记清零。

注意:我们的 tag \text{tag} tag 存储的是 k k k,而不是 k × ( r − l + 1 ) k \times (r - l + 1) k×(rl+1),所以下传的时候不需要将原懒标记除以二,直接下传原懒标记即可。

代码:

void PushDown(LL x, LL l, LL r) {
  if (tag[x]) {
    LL mid = (l + r) >> 1;
    AddTag(ls(x), l, mid, tag[x]), AddTag(rs(x), mid + 1, r, tag[x]);
    tag[x] = 0;
  }
}

Update \text{Update} Update

这次是正经的 Update \text{Update} Update 了。

步骤:

  1. 如果要修改区间完全包含当前区间,则直接 AddTag \text{AddTag} AddTag,并返回。
  2. 下传标记,这里不需要判断有没有标记, PushDown \text{PushDown} PushDown 里面有判断。
  3. 如果左儿子和要修改区间有并集,则递归修改左儿子。
  4. 如果右儿子和要修改区间有并集,则递归修改右儿子。
  5. PushUp \text{PushUp} PushUp

代码:

void Update(LL ul, LL ur, LL x, LL l, LL r, LL k) {
  if (ul <= l && r <= ur) {
    AddTag(x, l, r, k);
    return;
  }
  PushDown(x, l, r);
  LL mid = (l + r) >> 1;
  if (ul <= mid) {
    Update(ul, ur, ls(x), l, mid, k);
  }
  if (mid < ur) {
    Update(ul, ur, rs(x), mid + 1, r, k);
  }
  PushUp(x);
}

Query \text{Query} Query

加油!这已经是最后一个函数了。如果你看完这里,那么恭喜你,已经学会线段树了!

这也是唯一一个有返回值的函数,它返回的是 ∑ i = l r a i \sum_{i=l}^{r}a_i i=lrai不然呢?

步骤:

  1. 如果要查询区间完全包含当前区间,直接返回 t x t_x tx
  2. 下传懒标记,一定不要忘了这一步,因为 Update \text{Update} Update Query \text{Query} Query 是混着来的,在查询的时候也可能遇到没有下传的懒标记,如果不下传,那么就这递归就会让答案变小。
  3. 如果左儿子和要查询区间有并集,则递归查询左儿子,当前答案加上左儿子的和。
  4. 如果右儿子和要查询区间有并集,则递归查询右儿子,当前答案加上右儿子的和。
  5. 返回答案,这里不需要 PushUp \text{PushUp} PushUp你自己都没有修改为什么要修改上面的

代码:

LL Query(LL ql, LL qr, LL x, LL l, LL r) {
  if (ql <= l && r <= qr) {
    return t[x];
  }
  PushDown(x, l, r);
  LL mid = (l + r) >> 1, ans = 0;
  if (ql <= mid) {
    ans += Query(ql, qr, ls(x), l, mid);
  }
  if (mid < qr) {
    ans += Query(ql, qr, rs(x), mid + 1, r);
  }
  return ans;
}

P3372完整代码

// J2023 | BLuemoon_
#include <bits/stdc++.h>

using namespace std;
using LL = long long;

const int kMaxN = 1e5 + 5;

LL ls(LL x) {
  return x << 1;
}
LL rs(LL x) {
  return x << 1 | 1;
}

struct SegmentTree {
  LL n, a[kMaxN << 2], t[kMaxN << 2], tag[kMaxN << 2];
  void PushUp(LL x) {
    t[x] = t[ls(x)] + t[rs(x)];
  }
  void Build(LL x, LL l, LL r) {
    tag[x] = 0;
    if (l == r) {
      t[x] = a[l];
      return;
    }
    LL mid = (l + r) >> 1;
    Build(ls(x), l, mid), Build(rs(x), mid + 1, r);
    PushUp(x);
  }
  void AddTag(int x, int l, int r, int p) {
    tag[x] += p, t[x] += p * (r - l + 1);
  }
  void PushDown(LL x, LL l, LL r) {
    if (tag[x]) {
      LL mid = (l + r) >> 1;
      AddTag(ls(x), l, mid, tag[x]), AddTag(rs(x), mid + 1, r, tag[x]);
      tag[x] = 0;
    }
  }
  void Update(LL ul, LL ur, LL x, LL l, LL r, LL k) {
    if (ul <= l && r <= ur) {
      AddTag(x, l, r, k);
      return;
    }
    PushDown(x, l, r);
    LL mid = (l + r) >> 1;
    if (ul <= mid) {
      Update(ul, ur, ls(x), l, mid, k);
    }
    if (mid < ur) {
      Update(ul, ur, rs(x), mid + 1, r, k);
    }
    PushUp(x);
  }
  LL Query(LL ql, LL qr, LL x, LL l, LL r) {
    if (ql <= l && r <= qr) {
      return t[x];
    }
    PushDown(x, l, r);
    LL mid = (l + r) >> 1, ans = 0;
    if (ql <= mid) {
      ans += Query(ql, qr, ls(x), l, mid);
    }
    if (mid < qr) {
      ans += Query(ql, qr, rs(x), mid + 1, r);
    }
    return ans;
  }
};

SegmentTree tr;
LL m, op, x, y, k;

int main() {
  cin >> tr.n >> m;
  for (LL i = 1; i <= tr.n; i++) {
    cin >> tr.a[i];
  }
  tr.Build(1, 1, tr.n);
  for (; m; m--) {
    cin >> op;
    if (op == 1) {
      cin >> x >> y >> k;
      tr.Update(x, y, 1, 1, tr.n, k);
    } else {
      cin >> x >> y;
      cout << tr.Query(x, y, 1, 1, tr.n) << '\n';
    }
  }
  return 0;
}

线段树板子封装结构体:

struct SegmentTree {
  LL n, a[kMaxN << 2], t[kMaxN << 2], tag[kMaxN << 2];
  void PushUp(LL x) {
    t[x] = t[ls(x)] + t[rs(x)];
  }
  void Build(LL x, LL l, LL r) {
    tag[x] = 0;
    if (l == r) {
      t[x] = a[l];
      return;
    }
    LL mid = (l + r) >> 1;
    Build(ls(x), l, mid), Build(rs(x), mid + 1, r);
    PushUp(x);
  }
  void AddTag(int x, int l, int r, int p) {
    tag[x] += p, t[x] += p * (r - l + 1);
  }
  void PushDown(LL x, LL l, LL r) {
    if (tag[x]) {
      LL mid = (l + r) >> 1;
      AddTag(ls(x), l, mid, tag[x]), AddTag(rs(x), mid + 1, r, tag[x]);
      tag[x] = 0;
    }
  }
  void Update(LL ul, LL ur, LL x, LL l, LL r, LL k) {
    if (ul <= l && r <= ur) {
      AddTag(x, l, r, k);
      return;
    }
    PushDown(x, l, r);
    LL mid = (l + r) >> 1;
    if (ul <= mid) {
      Update(ul, ur, ls(x), l, mid, k);
    }
    if (mid < ur) {
      Update(ul, ur, rs(x), mid + 1, r, k);
    }
    PushUp(x);
  }
  LL Query(LL ql, LL qr, LL x, LL l, LL r) {
    if (ql <= l && r <= qr) {
      return t[x];
    }
    PushDown(x, l, r);
    LL mid = (l + r) >> 1, ans = 0;
    if (ql <= mid) {
      ans += Query(ql, qr, ls(x), l, mid);
    }
    if (mid < qr) {
      ans += Query(ql, qr, rs(x), mid + 1, r);
    }
    return ans;
  }
};

这样,你就学会了普通线段树的全部内容了,当然还有主席树,动态开点线段树,线段树合并,线段树分裂,李超线段树等等等等等等等等等等等等等……

当然,这些变种作者也不会

但是——

至少,你可以 AC 一道黄题了;至少,你可以在树状数组 TLE 的时候从容的写出一个线段树了;至少,你学会了一个 CCF 5 5 5 级考点了;至少,你可以像某曹姓巨佬一样,只要看到数列就想到线段树了。

恭喜你,学会了线段树!


这就是本文的全部内容了,请帮我点一个赞然后关注我吗 Q w Q QwQ QwQ

这篇文章的 Markdown 有428行,总字符数可以在标题下面看到,文件一共 12.2 12.2 12.2 KB,看在我码了这么多字的份上,你真的不点一个赞吗?

【本文转自我的原创博客园文章欢迎关注加点赞

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值