糖果传递代码证明

题目链接如下找不到页面 - AcWing

题目大致意思是许多人围成一圈,每个人都可以向左右两边传递糖果,问你要使全部糖果都相同时最小要传递多少次。

像这个数据给的如此离谱就非常难受,所以要尽量去想一个时间复杂度在o(n)的方法。

我们可以用如此方法推到

可以设每个点向左传递了糖果Xi个然后进行推倒。

最终得到的全部的糖果数肯定是总和的平均数我设为Ave

原来有的糖果为ai;

Ave可表示为Ave=a1-x1+x2

Ave=a2-x2+x3

Ave=a3-x3+x4.....Ave=ai-xi+x(i+1)

Ave=an-xn+x1

可得x2=Ave-a1+x1 x3=Ave-a2+x2=2*Ave-a2-a1+x1

x4=3*Ave-a3-a2-a1+x1;

xi=(i-1)*Ave-(\sum _{j=1}^{n}a[j])+x1; (n=i-1)

设ci=-(i)*Ave+(\sum _{j=1}^{n}a[j])(n=i)

因为这些值都是确定的所以可将xi表示为;

x(i+1)=x1-ci;

最后总和为|x1-c1|+|x1-c2|+|x1-c3|+...+|x1-cn|

最终和货仓选址差不多了

 代码为

#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1000000+5;
long long res=0;
long long c[N],a[N];
int main(){
    int n;
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        a[0]+=a[i];
    }
    a[0]/=n;
    for(int i=1;i<=n;i++){
        c[i]+=c[i-1]+a[i]-a[0];
    }
    sort(c+1,c+n+1);
    int k=(n+1)/2;
    int b=c[k];
    for(int i=1;i<=n;i++){
        res+=abs(b-c[i]);
    }
    cout<<res;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值