Malfunctioning Typewriter (牛客多校3 E)

进入博客阅读体验更佳:Malfunctioning Typewriter (牛客多校3 E) | 付诺の小站 (funuo0728.github.io)

Malfunctioning Typewriter

题目大意


给定 n ( 1 ≤ n ≤ 1000 ) n(1\le n \le 1000) n(1n1000)个长度为 m ( 1 ≤ m ≤ 1000 ) m(1 \le m \le 1000) m(1m1000)的字符串,你有一个打字机,要求你打印一个字符串,并且它是由这 n n n个字符串按任意顺序连接形成的字符串之一。使用这台打字机时,你有 p ( 0.5 ≤ p ≤ 1 ) p(0.5 \le p \le 1) p(0.5p1)的概率打出想要打的字符。

问采取最优策略,打印出满足要求的字符串的概率是多少?

解题思路


可以考虑建一棵字典树,那么打出一个合法字符串就相当于在这字符串上走 n n n次,每走一次遍删去所对应的字符串。那么,对于字典树上的某一节点,假设它的左子树上的叶子节点数为 x x x,右子树上的叶子节点数为 y y y,需要保证遍历到这个节点的时候,往它的左儿子走了 x x x次,右儿子走了 y y y次。并且每个节点对答案的贡献都是独立的,假设节点 i i i的贡献为 f [ x i ] [ y i ] f[x_i][y_i] f[xi][yi],那么答案即为: ∏ f [ x i ] [ y i ] \prod f[x_i][y_i] f[xi][yi]

接下来思考如何求 f [ x i ] [ y i ] f[x_i][y_i] f[xi][yi],自然联想到 d p dp dp f [ i ] [ j ] f[i][j] f[i][j]表示打印 i i i 1 1 1和打印 j j j 0 0 0的概率,可得状态转移方程:

f [ i ] [ j ] = m a x ( p ∗ f [ i − 1 ] [ j ] + ( 1 − p ) ∗ f [ i ] [ j − 1 ] , p ∗ f [ i ] [ j − 1 ] + ( 1 − p ) ∗ f [ i − 1 ] [ j ] ) f[i][j] = max(p * f[i - 1][j] + (1 - p)*f[i][j - 1], p * f[i][j - 1] + (1 - p)*f[i - 1][j]) f[i][j]=max(pf[i1][j]+(1p)f[i][j1],pf[i][j1]+(1p)f[i1][j])

我是这样思考转转移的,考虑 f [ i ] [ j ] f[i][j] f[i][j]能转移到那些状态,如果我们打印 1 1 1,那么有 p p p的概率到 f [ i + 1 ] [ j ] f[i + 1][j] f[i+1][j],有 ( 1 − p ) (1 - p) (1p)的概率到 f [ i ] [ j + 1 ] f[i][j + 1] f[i][j+1];如果打印 2 2 2,那么有 p p p的概率到 f [ i ] [ j + 1 ] f[i][j + 1] f[i][j+1],有 ( 1 − p ) (1 - p) (1p)的概率到 f [ i + 1 ] [ j ] f[i + 1][j] f[i+1][j]

最后整合以下即可得到上式。

还有一个想法是考虑可以从哪些状态转移到当前状态,本质上感觉是差不多,笔者更习惯自己这种做法,所以这里就只介绍自己的写法了Ciallo~(∠・ω< )⌒★。

参考代码

#include <bits/stdc++.h>
#define maxn 1010
#define int long long
using namespace std;
const double eps = 1e-8;
double f[maxn][maxn];
int e[1000100][3], sz[1000100], idx;

void insert(string s) {
    int p = 0;
    for (auto u : s) {
        if(!e[p][u - '0'])  e[p][u - '0'] = ++idx;
        p = e[p][u - '0'];  sz[p]++;
    }
}

void solve() {
    int n, m;  double p, res = 1;
    cin >> n >> m >> p;
    for (int i = 1; i <= n; ++i) {
        string s;  cin >> s;
        insert(s);
    }
    f[0][0] = 1;
    for (int i = 0; i <= n; ++i) {
        for (int j = 0; j <= n; ++j) {
            if(i && j)  f[i][j] = max(p * f[i - 1][j] + (1.0 - p) * f[i][j - 1], p * f[i][j - 1] + (1.0 - p) * f[i - 1][j]);
            else if(i)  f[i][j] = max(p * f[i - 1][j], (1.0 - p) * f[i - 1][j]);
            else if(j)  f[i][j] = max((1.0 - p) * f[i][j - 1], p * f[i][j - 1]);
        }
    }
    for (int i = 0; i < idx; ++i)  res *= f[sz[e[i][0]]][sz[e[i][1]]];
    cout << fixed << setprecision(10) << res << '\n';
}

signed main() {
    ios::sync_with_stdio(false);
    cin.tie(0);  cout.tie(0);
    int t = 1;
    while (t--) {
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值