天天爱跑步 2024杭电多校6 1011(换根dp + 简单算法大杂烩)

进入博客阅读体验更佳:天天爱跑步 2024杭电多校6 1011(换根dp + 简单算法大杂烩) | 付诺の小站

天天爱跑步

题目大意


给定一棵 n ( 1 ≤ n ≤ 1 0 5 ) n(1\le n \le 10^5) n(1n105)个节点的基环树,求经过第 i ( 1 ≤ i ≤ n ) i(1\le i \le n) i(1in)个节点的最长简单路径。

解题思路


首先,如果给出的是一棵简单树,则直接做两遍 d f s dfs dfs,再加个换根 d p dp dp直接秒。对于这道题,我们需要思考环会造成的影响。

先考虑非环点,那么这个点一定会是一个以环上点为根的子树上的节点,这就相当于一棵简单树,但是呢,在这里我们需要先预处理出每个环上点不往以它为根的子树走所能走的最长距离 g i g_i gi。既然不能往子树走,那么自然只能往其他环上点以及它们的子树上走。所以,先预处理出每个环上点能往子树走的最大距离 m x d i mxd_i mxdi。假设我们求出了每个环上点的 m x d mxd mxd,那么点 j j j g j = m a x ( ∣ i − j ∣ + m x d i ) ( i ∈ S ) g_j = max(\vert i - j\vert + mxd_i)(i \in S) gj=max(ij+mxdi)(iS) S S S表示环上点的集合。对于这种有环以及有绝对值的式子,直接断环成链会好写很多,断环成链后官方题解用的双指针,笔者这里用的是单调队列,难度上感觉差不多。(因为总体代码冗长,笔者就不再讲解细节,只介绍一下大致思路。不会的算法可以去学,用到的也只是些简单算法。)

求出 g g g数组之后,对于非环上的点就处理完毕了。接下来考虑环上点,容易想到经过它的最长简单路径的两端一定位于环上点的子树上,并且可以推出公式:

对于 k ∈ [ i , j ] k\in[i, j] k[i,j],有 r e s [ k ] = m x d i − i + m x d j + j , ( j > i ) res[k] = mxd_i - i + mxd_j + j,(j \gt i) res[k]=mxdii+mxdj+j,(j>i)

对于 k ∈ [ 1 , i ] ∪ [ j , ∣ S ∣ ] k\in[1, i]\cup[j, \vert S\vert] k[1,i][j,S],有 r e s [ k ] = m x d i + i + m x d j − j + ∣ S ∣ , ( j > i ) res[k] = mxd_i + i + mxd_j - j + \vert S\vert,(j\gt i) res[k]=mxdi+i+mxdjj+S,(j>i)

以上两式均可通过维护前后缀最值得出,不过,按照笔者的写法,第二个式子,除了维护后缀最值还需要开一个 v e c t o r vector vector辅助计算。

至此,本题结束。

参考代码

#include <bits/stdc++.h>
#define maxn 200100
#define int long long
using namespace std;
const double eps = 1e-8;
vector<int> e[maxn], cyc, s;
int mxd[maxn], f[maxn], g[maxn], s1_p[maxn], s1_n[maxn], s2_p[maxn], s2_n[maxn], p[maxn], nx[maxn];
bool vis[maxn];

bool dfs(int x, int fa) {
    vis[x] = true;
    for (auto u : e[x]) {
        if(u == fa)  continue;
        if(vis[u]) {
            while(s.back() != u)  cyc.push_back(s.back()), s.pop_back();
            cyc.push_back(s.back()), s.pop_back();
            return false;
        }
        s.push_back(u);
        if(!dfs(u, x))  return false;
        if(s.size())  s.pop_back();
    }
    return true;
}

void dfs(int x, int f1, int f2) {
    for (auto u : e[x]) {
        if(u == f1 || u == f2)  continue;
        dfs(u, x, x);
        mxd[x] = max(mxd[u] + 1, mxd[x]);
    }
}

void dfs(int x, int f1, int f2, int cur) {
    int mx1 = cur, mx2 = 0;
    for (auto u : e[x]) {
        if(u == f1 || u == f2)  continue;
        if(mxd[u] + 1 > mx1)  mx2 = mx1, mx1 = mxd[u] + 1;
        else if(mxd[u] + 1 > mx2)  mx2 = mxd[u] + 1;
    }
    if(!g[x])  f[x] = max({f[x], mx1 + mx2});
    for (auto u : e[x]) {
        if(u == f1 || u == f2)  continue;
        if(mxd[u] + 1 == mx1)  dfs(u, x, x, mx2 + 1);
        else  dfs(u, x, x, mx1 + 1);
    }
}


void solve() {
    int n;  cin >> n;
    for (int i = 1; i <= n; ++i) {
        int u, v;
        cin >> u >> v;
        e[u].push_back(v);  e[v].push_back(u);
    }
    s.push_back(1);
    dfs(1, -1);
    int k = cyc.size();
    for (int i = 0; i < k; ++i)  dfs(cyc[i], cyc[(i + k - 1) % k], cyc[(i + 1) % k]), cyc.push_back(cyc[i]);
    deque<int> q1, q2;
    for (int i = 0; i < 2 * k; ++i) {
        if(q1.size() && q1.front() + k == i)  q1.pop_front();
        if(i >= k)  g[cyc[i % k]] = max(g[cyc[i % k]], mxd[cyc[q1.front() % k]] + i - q1.front());
        int c1 = mxd[cyc[i % k]] + (2 * k - i);
        while(q1.size() && mxd[cyc[q1.back() % k]] + (2 * k - q1.back()) <= c1)  q1.pop_back();
        q1.push_back(i);
    }
    for (int i = 2 * k - 1; i >= 0; --i) {
        if(q2.size() && q2.front() - k == i)  q2.pop_front();
        if(i < k)  g[cyc[i % k]] = max(g[cyc[i % k]], mxd[cyc[q2.front() % k]] + q2.front() - i);
        int c2 = mxd[cyc[i % k]] + i;
        while(q2.size() && mxd[cyc[q2.back() % k]] + q2.back() <= c2)  q2.pop_back();
        q2.push_back(i);
    }
    for (int i = 0; i < k; ++i)  dfs(cyc[i], cyc[(i + k - 1) % k], cyc[(i + 1) % k], g[cyc[i]]);

    for (int i = 0; i <= k; ++i)  s1_n[i] = s1_p[k] = s2_n[i] = s2_p[i] = p[i] = nx[i] = -1e9;
    for (int i = 0; i < k; ++i)  s1_p[i] = max(s1_p[max(0ll, i - 1)], mxd[cyc[i]] - i), s2_p[i] = max(s2_p[max(0ll, i - 1)], mxd[cyc[i]] + i);
    for (int i = k - 1; i >= 0; --i)  s1_n[i] = max(s1_n[i + 1], mxd[cyc[i]] - i), s2_n[i] = max(s2_n[i + 1], mxd[cyc[i]] + i);
    vector<pair<int, int>> t1, t2;
    for (int i = 0; i < k; ++i) {
        t1.push_back({mxd[cyc[i]] + i + s1_n[i + 1] + k, i});
        if(i)  t2.push_back({mxd[cyc[i]] - i + s2_p[i - 1] + k, i});
    }
    sort(t1.begin(), t1.end(), greater<>());  sort(t2.begin(), t2.end(), greater<>());
    int sz1 = t1.size(), p1 = 0;
    int sz2 = t2.size(), p2 = 0;
    for (int i = 0; i < k; ++i) {
        if(i)  f[cyc[i]] = max({f[cyc[i]], s1_p[i] + s2_n[i + 1], s1_p[i - 1] + s2_n[i]});
        else  f[cyc[i]] = max({f[cyc[i]], s1_p[i] + s2_n[i + 1]});
        while(p1 < sz1 && t1[p1].second < i)  p1++;
        if(p1 < sz1)  f[cyc[i]] = max({f[cyc[i]], t1[p1].first});
    }
    for (int i = k - 1; i >= 0; --i) {
        while(p2 < sz2 && t2[p2].second > i)  p2++;
        if(p2 < sz2)  f[cyc[i]] = max(f[cyc[i]], t2[p2].first);
    }

    for (int i = 1; i <= n; ++i)  cout << f[i] << " \n"[i == n];
    for (int i = 0; i <= n; ++i)  e[i].clear(), vis[i] = false, mxd[i] = g[i] = f[i] = s1_p[i] = s1_n[i] = s2_p[i] = s2_n[i] = p[i] = nx[i] = 0;
    cyc.clear();  s.clear();
}

signed main() {
    ios::sync_with_stdio(false);
    cin.tie(0);  cout.tie(0);
    int t = 1;  cin >> t;
    while (t--) {
        solve();
    }
    return 0;
}
  • 13
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值