Think like a CIO: Cyber resiliency starts and ends with your data (sponsored by Cohesity) (Cohesity)

So let me go ahead. All right. So in terms of how we're going to break things down today, um we're gonna start out, I'm just gonna sit down with Ryan. We're gonna do a little bit of a fireside chat. At the end of that fireside chat, we can probably take up to like two questions from you guys. If you and gals, if you have anything for Ryan, we can grab it, then um otherwise we'll take the rest of your questions at the end and we, if we can do that up on stage, we will, um, if not, we can do that um off to the side depending on where we're at on time.

So we'll talk to Ryan and then from there, Ryan and I are going to talk about some things not only from an industry perspective, but also um from a JSR perspective alongside enterprise challenges and best practices. So we'll dive into that and then we're gonna talk just briefly about Cohesive and how we can help. All right.

So let's go ahead and uh I have my cheat sheet of questions so we can dive right in. So again, thank you for being here with us. Appreciate it.

So Ryan, can you tell us a little bit more about your background? But then can you also talk about JSR as a company?

Sure. Yeah. So I've been in IT for more than 20 years um in various different positions. I actually started out in a nontraditional path. My background was biochemistry. I started out as an analytical drug research chemist working for Novartis and I did that for a few years before I realized I really didn't want to be in the labs for the rest of my life. Um while I enjoyed the science, working around all the chemicals wasn't necessarily good for your health.

Um so that being said, moved into supporting the lab system. So I was able to do make that migration became a CIS admin uh supporting the lab systems. And from that took on various different roles, grew in my position within Novartis where I was managing teams that were responsible for IT for uh everything within the the value chain life cycle from um the, the warehousing uh inventory management, manufacturing q a qc labs, all those different types of things.

And so I did that for a number of years and I got to a point where I felt like there was an inflection point where I had to make a decision on whether or not I wanted to be a pharma IT guy for the rest of my career. Or if I really wanted to focus more on technology. And I decided I wanted to go down the ladder path. I wanted to go into a broader technology role, really focusing on where I could use technology to help solve business problems.

And so I took that opportunity to go join Microsoft and I had a number of different roles when I was at Microsoft. Uh but one of the ones I was in for the longest was as an enterprise architect and I was in Microsoft IT as in a group that was supporting all the engineering teams at Microsoft. And so we were really working on at that point, that was the initial transition of Microsoft's cloud and figuring out how do we refactor applications, how do we think about running applications on prem going to the cloud? And so it was a pretty cool time and learned a lot. And that was really interesting.

And then I had another opportunity to continue on my nonin industry specific growth journey. And I joined Charles Schwab. And so I joined as a software architect. And when I was doing that, I was there and I was working on modernizing mainframe codes. We had some 30 year old cobalt code and we were modernizing it to microservices based that we could run in the cloud. And so another interesting opportunity to go after that and uh then moved into a leadership role uh leading an en large engineering team that was Schwab's equity compensation platform.

And then I came across a role where I'd always wanted to keep building towards becoming a CIO. And uh I saw a job posting for someone who was looking for someone who had a pharma background and who also understood modern software development. I said, hey, that actually fits really well with what my background had been.

And so I joined KBI, well, when I joined KBI as a CIO, I didn't quite understand all of the structure. So KBI is actually a wholly owned subsidiary of JSR, but JSR has a very decentralized environment. And so when I joined KBI, I really was joining as a CIO of a very small company, I just happened to be owned privately.

And when I was at KBI, I was in that role for about 12 months, I was looking at a modernization strategy, I was looking at different areas that we needed to work on. I also had cybersecurity responsibilities and so created a strategy there that really was focusing on how only how we could modernize KBI, but also expand some of the services to other companies as I started learning about these other JSR companies.

And after about 12 months in that role, I was asked to come into my current role, which is do that at a global level. And so what I'm doing now is I have responsibility from a cybersecurity perspective. I also have traditional IT responsibilities and what I'm trying to do is really create enterprise services across JSR.

So who is JSR? Um so JSR corporation, we are a Japanese company. Uh we're headquartered in Tokyo and we are a conglomerate. We, we do a lot of different things, but really what we are is a, you know, we're a chemical company. Um we're focused on uh innovation through material innovation. And so we have a long history of being able to have a lot of r and d with scientists who are able to help you create new molecules, new ways to synthesize products.

And we're organizing three different main divisions. So our first one is our digital solutions and that's one we're probably most known for which is we create a product called photolithography. And we are the largest producer of photolithography and photolithography is a key raw material in the manufacturing of silicon chips.

Um and so we are one of the largest producers of that. We do both for all of the, the large uh chip producers as well as the large memory producers. We are key product, key raw material supplier for that we do.

Uh we have a product that we create one of the layers that goes into flat screens like these flat screens in front of us. We create a layer that interacts with in order to be able to create the, the pictures, especially like on OE screens.

Uh we have a plastics business uh that's one of our other divisions and we make a plastic that is specific for cars and that is specifically formulated so that the, the cup holders don't squeak in the cars. Um so obviously a very niche uh little area for that.

And then we have our life sciences business, which is where I started um in our life sciences business, we have multiple companies, but one of our um our three of our biggest are we have a contract research organization called Crown Bioscience. And what they're doing is they're working with pharma companies that if, if a disease process is known, they're doing gene sequencing and DNA sequencing to find drug candidates and then they're doing efficacy and safety studies on those drug candidates before potentially giving them to patients.

Um we have a contract development manufacturing organization, which is what KBI does. KBI works with pharma companies as well. Those are the customers we take the, the the drug candidate. Now we take it from bench scale all the way up through commercialization. And so again, we were working on behalf of pharma companies. We create a drug product. We do first in human clinical trials, phase one, phase two, phase three clinical trials as well as commercialization of drug products.

Um and then we have a diagnostics business and in that business, what we do is we create diagnostic test kits for hospitals. And so things like um we, we just really recently released a irritable bowel syndrome, uh test kit that helps for the diagnosis of irritable bowel syndrome when patients go in.

So you can see it's a, it's a very diverse company and, uh, it's been really decentralized. And so in my role, there's, there's been a ton of opportunities for how do we look at different systems? What are those systems that we want to have as standardized systems? What are those systems that really should remain localized and are important for those individual companies to be able to run their business? And so that's really where i i am today.

So you have a, a very large organization that's globally distributed, that also has a lot of different, almost like I don't wanna call units, right? Sub companies, but it also spreads across many different areas. So you have a lot of data to, to manage a lot of, a lot of complexity, a lot of data.

Yeah, for sure, for sure.

OK. So um let's talk a little bit about um you a Cohesive customer. We already, we already mentioned that, right? Can you just talk a little bit about why you implemented Cohesive just based upon your environment?

Yeah, we're, we're almost, so I would say we're almost a Cohesive three different times.

Um and so we started out um I first started talking to Cos when I was KBI um and KBI was, was looking at, we had a specific two specific use cases. One, I was really nervous about the stat that Teresa had mentioned at the beginning of, hey, if you get ransomware, it's likely that you're, you're gonna have your backup encrypted. I really was nervous about that. I did not want to call the CEO and say, hey, our plants are shut down. We can't run because all of our data is encrypted. And so that was part of it.

Um we also had a use case that we have uh a lot of data generated by scientific instruments and that data in a lot of cases, what we find is that the vendors for scientific instruments are really good at the science and they're not as good at the software. And so we can't get that data from the instruments up to say a network or a cloud, the data can only be written to a C drive. And so we needed to figure out a way to how to protect that data.

And so those were some of the, the initial use cases that we started to look at where we went and selected Cohesive. Since then, we've selected uh Cohesive, again, kind of going company by company as we still work towards this enterprise model. And we selected them for another company where we really just backed up everything to the cloud.

Um that we were already doing that company was already doing some backups to the cloud. And then another company again, similar where we had uh a use case sort of with the labs, but also where we wanted to use Cohesive to replicate data and a very efficient process.

OK. So you're leveraging Cohesive, not only for backups and recovery, you're also replicating your data. So there's multiple use cases.

Yeah, definitely, definitely.

All right. So you also use AWS. We also are an AWS customer.

Yeah. So we um we have a couple of different ways that we're using AWS. So in my area specifically, we're using AWS really from infrastructure as a service concept. So we have some of our file servers are up there. Um we're hosting SAP in AWS. We also are doing for some of the smaller companies that don't have some of the IT resources. We do infrastructure service.

"So we'll host things like their servers, we'll host VMs up in AWS. So we have that, we also have another part of our group where we are building a lot of applications leveraging AWS services. And so we have the overall uh infrastructure of setting up our VPCs using, you know, direct connect to connect our environments, leveraging a number of different tools that, that AWS has. Uh we're building a lot of our own environment.

We have a, a Redshift data lake up in AWS that we're, we're using to help aggregate some of our data. So yeah, we, we definitely consume a number of AWS services. Ok? Awesome. So then let's uh dive a little bit deeper. You've kind of implied like some of the data types that you might have. Can we look at that a little bit more closely your data types?

Yeah. So we are um I think, you know, again, for us, one of the big use cases was how can we get some of that data off of our lab systems? And so for those systems, that was one of the first things is we had to be able to have something that could capture that data from the lab systems and be able to protect that data. So that's, that's part of it. Um we're, we're definitely, we're backing up our databases, we're backing up SAP, we're backing up Linux, we're backing up VM images, we back up, uh we'll be backing up, we're transitioning to S4 HANA. So we'll be using that to back up our Hana environment as well. So we're using it in a number of different spaces on, on pretty much all of the, the those data types that i mentioned.

We also use it for. Uh we are using it for all of our, our office environments. So Microsoft 365 we're using it to back that up as well as our OneDrive environments and SharePoint online. Wonderful. All right. So you mentioned it took a few looks, a few takes to, to choose uh Cohesive. So what was the methodology that you applied when you chose your, your backup solution.

We, we really did look at a number of the, the vendors in the backup space and you know, many of those vendors are here. And so we, we were looking at that and there was a couple of things that we wanted to look at. Well, one was um the, the, the the instruments, right? So i won't believe that point, but the other one was um just being able to, how can we capture that data and make sure that that data is protected as much as possible. How do we make sure that our backups don't get encrypted? And uh that was, that was one area where we found that Cohesive was really uh above the, the competitors that we were evaluating was that that concept of immutability and that once a file gets written it, it doesn't get overwritten and we understand the history associated with that file.

And um then the, the, the third thing for us was the, the concept where we, we have some of our implementations are on prem or hybrid. And so we have a number of our companies where we have some on prem hardware that can capture that data locally that we can then use from ad r perspective. But then we also have other satellite offices that we can then just have as a cloud only. So we have this hybrid environment and it could really work with us given that we had some sites that were pretty sizable and some sites that were really small and then we also had constraints with different geographies. And so Cohesive really gave us the flexibility as we were thinking about some of those different constraints.

Ok. That's um that's again, that complexity that you carry in your org. Um it sounds like it actually um what we were able to provide allows simplicity um at its core. Right. Yeah, for sure. Um yeah, it, it definitely does. All right. So then um uh one last question before we see if the audience has any for you. Um and then we can transition to the next piece. Um so why do you continue to use Cohesive today?

Um well, so we've, we've uh like i said, we've, we've chosen Cohesive already three times. Um and uh so we, we've made that decision more than once that says, yeah, Cohesive is the right strategic partner for us. And one of the areas again was this, this concept that i was just talking about. The hybrid architecture is really important for us to be able to use from both a ad r perspective as well as the backup and the security perspective.

The other thing that, that we found is, is as well is, um you know, we've seen some of the partnerships with Cohesive and AWS. And so, for instance, uh just, just last this year, i guess this year, um you Cohesive was in Japan. And so we have a large presence in Japan, about half of our company is in Japan. And so it was really important for us to be able to have that data, um be able to be backed up in Japan, um be able to be that region specific. So that was another reason where we continue to look at how do we expand that footprint because uh really Cohesive is, is close to where we are.

And so that's one of those areas. So not only the core features of that, but also the um you know, having that, that close to there. Um the other one for us that we are we've been working towards uh is, is just being able to have more of um some of the air gap copies of the data. And so having that kind of that third replica of, of an air gap copy of the data. So just in case you never know it, it was, it's always nice to know that you have if you will a gold standard of a backup. Excellent. All right, let's go ahead and uh we're gonna transition into the next section of our presentation."

Um so what could you share uh around that with jsr? Yeah. So as I mentioned, one of the areas that we um service is we service a lot of pharma clients. And so with our pharma clients, one of the things that we find is that, that, that um replication of data, the encryption because they, we're creating ip on behalf of those clients. So for them, they're really, they put a lot of standards on us and wanting to make sure that their ip is secure and how they're doing that.

And so the concept of being able to replicate that having those replicas, again, making sure that they're often cases geo distributed in case there is some geopolitical issues from an encryption standpoint, it's very key that all of our data is encrypted both in transit and rest. And then making sure that as well that we understand when that data is generated, we have to have the history of how that data was generated, who's made changes to that data and being able to understand what that is.

So all of those are really critical for us in order to be able to provide data for our clients and be able to show that we're taking care of their data and being good stewards of their data. And I think one of the things we did talk about, right, you don't have a ton of pi i, but I'm sure most of the organizations out here do and I know I've dealt with that in the past, you know, we do have to be good stewards of that and, and make sure that if something happens not leaked. Right.

Yeah, and that's it, it's, and it's uh for those who aren't even in a, you know, don't have to worry about gdpr. But even if you're doing data in the united states, there are so many new regulations that are coming out and how many, how we're using pi i and I would argue that every company has some pi i, right. If you have any of your employee records or any of your employee data you have some pi i even if you're not maintaining customer data, so very, very quickly, you have to think about pi i somewhere somehow you can't ignore it.

So I mentioned a couple of times, um and, and, you know, kind of following up on the question of as, as we thought of this was, um, how do we think about backup and recovery speeds? And so we had some products that were doing some backups, but we wouldn't, we didn't have enough of a, a confidence that they could do our entire environment. And so what we were, one of the areas that we were, we were looking at when we did our vendor evaluation was how could we make sure that whatever the solution we had would be able to meet a large set of data for multiple different applications as well as the data that those applications were being generated. And so that's really where we had that.

And that's also part of the reason why we have, we have 22 instances of hybrid implementation of cohesive where we have hardware on prem and we will have several instances of cloud only implementation where we are just backing up to an aws environment. And if we had a disaster, we would just run out of those aws environments. And so that's some of the areas that we, we were focused on as far as kind of why were we looking at this?

And we also are working towards the recovery testing. So with cohesive, one of the areas that we have is the ability to have kind of a dev test environment where we can actually try some of those recoveries without having to do a full recovery in production. And so this is an area where we want to be able to continue to develop. And ultimately, what we want to be able to do is have multiple iterations of our testing and our recovery testing on a year over year basis so that we don't have to be surprised and just hoping that we can recover in the event of a disaster or a potential security incident.

And so this is all of the all areas that we are leveraging cohesive and we're really looking forward to being able to continue to evolve and modernize and become much more mature in this area. So I think for me, the biggest takeaway of what you said is plan for recovery, right? The backup. You don't want to just check a box and see that, you know, ok. Yay, they're green like they're backing up. Um you really do need to take that step of planning for recovery.

Yeah, for sure. Um I I think, yeah, you want to kind of start with the end of mind, right? Why, why are we doing this? Right? Why are you backing up? You're backing up because it is likely at some point that you're going to have an issue and you need to get back to that data. Hopefully, it's not like an entire data center, but more often than not what it is is it's someone who deletes a file and all of a sudden they're like, oh, i need that file. Um, or if you know, we've had uh an incident where, um, we had a user who turned in their notice and while we were processing the termination, that user went and deleted all the files out of the accounting shared files, um which would have been a very big challenge to close the books, but we were able to recover all of those files.

Oh, wow. So, so yeah, so, so again, kind of threat surface area. Um and obviously, users are always always the biggest challenge. Um but that was one of the areas where we were able to, to take that and uh do a recovery. Yeah, thank goodness. Yes, it was. Yes, it was.

Um so we, we mentioned again, not just backup and recovery. Um when we looked at why were we wanting cohesive? What was great about it for us was, was the immutability. So, data integrity and, and I think in the world that we are going towards with more and more a i it's going to be in your workplace, understanding your pedigree of your data is going to be critical. And so having this understanding that if I have some original science data, that's being created, whether that's to create a molecule for photo resist or to create a molecule that's gonna create a drug product. I need to be able to understand that that data that was created is real. And so the concept of immutability for that data is going to become really, really important i mentioned before as well that for us being able to understand where and how we are storing our data is really critical.

We have some of our big areas that we need on prem, we need that on prem just because we physically can't recover enough data if we had an issue. But we also have another, a number of places where we didn't want to spend the money to, to try to do that and create that infrastructure on prem. So we can, we can just use cloud. And then we also know that we have always edges, always fun and exciting to try to manage how we, we work at the edge.

So all of these were different areas that for us, we we really considered and we wanted to make sure that as we were working through this, those were some of the areas that we were focused on. And so I would ask all of you from a best practices perspective. Again, take this list, maybe grab us a picture of it even and, and go back and compare with your organization and make sure that um you know, if these things make sense that you're doing them.

Yeah. All right. So, um in terms of best practices from a compliance perspective, um i, i find that this is also very individualistic to your organization. Um but I think it's critical to make sure that you're also reviewing this. Um one example uh that I'd like to highlight, i ifi found that um during one of the, or, or at one of the organizations that i worked in, in the past, it was a health care organization. We even went a step further. Of course, you think hi, a right away, we were even doing socks compliance. So I think sometimes it's good to not just do the minimum but also do more. And then the other thing I want to call out on this list, um, is m fa I think we always, uh, trusted m fa uh traditional m fa as the way to protect entry to our data. But unfortunately, it's really now best suited if you also have uh fido two alongside it because, um, our malicious attackers are now also able to, to get into traditional m fa.

So I'm gonna go ahead and do you have anything to add on this? I would just say again, as i mentioned earlier, the, the compliance comes up no matter what and whether you've been thinking about it or whether you stumble across it, compliance comes up. And so we don't have a lot of, uh, as i said, we don't have a lot of pi i, but we have pi i, we have new state regulations that are coming in on a very regular basis. We operate in california. So we already start with kind of one of the strictest, but we have gdpr standards, we have standards from other countries.

And so a lot of times you also have to think about even if you're maybe not doing business in that country, if you're storing data in that country, or even sometimes if you have data transiting through certain countries, you have responsibilities of how you do compliance. And so I think it's important to make sure that as you are considering what is the best way to do your backup solutions and what are you going to do with your data? Just know that there's more and more regulators who are also going to be uh opinionated on what you should do with your data as well.

Are any of you challenged with the global organization a couple or so? Maybe otherwise you're pretty localized in your go. I'm i'm assuming that could be us or anywhere else. So just a few of you with the global challenge. Ok, interesting.

Um I, I thought it was maybe a little more common now now I'm realizing maybe it's not. So um ok, so let's talk a little bit about from a best practices perspective. Uh the zero trust maturity model. So the zero trust maturity model um is something that cia.gov um released um sometime in the last year or two and it's really uh guidance around how to handle your enterprise security.

Um so one identity. So how are you gonna handle users and their access to your devices? Are you gonna let them use their own devices at home or are you going to issue corporate? For example, networks are also interesting because we have a lot of people who do work remote in this day and age and so home networks can actually cause some challenges and and I'll just add on to this.

So we, we did see that recently at one of our sites uh with the fort net zero day, the way uh the attacker got access to the site, but the way that they got access to the site is they actually hacked a user's home wi fi and then they traveled along the user's home wi fi in to be able to explore the fort net zero day. So as much as I don't want to get into trying to manage users home networks, just know that that's also one of those areas that uh from a security perspective is, is definitely out there that you have to think about.

Um zero trust also means you have some good security wrapped around those applications and workloads. That network example is uh important example of how that would be so critical. And then of course, even data, how you're going to secure it. Is it going to be immutable, et cetera?

Did you have any? So, we, we certainly are trying to follow, you know, best practices around zero trust. I've seen some statistics that say that, you know, so many companies are going after zero trust, but it's really, really hard to do. And I agree, but that doesn't mean you don't go after it. I think that what we would say is that we're starting with data, if you can focus on making sure that the data is secure and the data is protected, that's a great base to start building on these other things. I wouldn't say you could ignore any of it, right? You have to be working on all of these things. But if you know that your data is secure, then there's a good chance that if there's something that's bad happens, you're gonna be able to recover from that another set of best practices.

Um these align with a part of the nist framework, not the whole nist framework. Um but foundation, I think it's important to make sure that you do have a strategy or best practice in place to protect your data. Uh to make sure that you have mechanisms in place to help detect threats. You don't want someone coming in on that home network. But of course, it can be so much more vast than that. It can be as simple as um an email exploit or an internet exploit. So make sure you have detection and blocking capabilities in place and then I cannot emphasize uh more um make sure you have a recovery plan and your recovery testing.

Yeah, again, so we've, we've talked a lot about this for us where we looked about where cohesive is, is it kind of is booked in? For us part one of the tools and we have multiple different tools that are doing different things, but for us, cohesive helped from both from our protect. How do we make sure that if the ransomware gets in, it doesn't encrypt our backups, but then how do we recover as well? So we're using it for those things and we also have a lot of great other tool, tools that we're using on, on all of these different things uh as far as that.

But um yeah, and luckily in the, the scenario that i mentioned where the, the the attacker tried to go in the home network and, and got through that fort net. Um zero day that we did have systems that detected it and stopped it. So it wasn't, it was not a big issue other than the fact that we, we were like, oh, that's, that's good that we have these other things helping to back that up. Otherwise that could have been scary.

Um so, uh yeah, I would really recommend as you think about what is your solution set? There's, there's not probably one tool to rule them all. There's multiple tools that you're gonna need to be able to look at and, and use. And I think it's important to understand how are those tools going to be able to complement each other and then can you use them for more than just one thing? So don't, don't bring in just like the best of the best. It only does one thing bring in something that can really complement and work with a bunch of other tools and we've really found that with co city um as well.

Um and actually, i, i forgot because there was a scenario too that we found um where co he has a capability that alerted us that said, you know, hey, someone's accessing some files that they normally don't, they don't do. We actually had two systems. Co c was one of them. We had another system as well that flagged that as, hey, this is abnormal behavior.

Um so there is a component of co cd that also provides that detect the detection, the anomaly

Right. Exactly. That's exactly right. Yeah. All right. So this still aligns with best practices, but it does also align with um methodologies that we apply from the cohesive perspective. So I'm actually just gonna uh build this whole thing out. So there's really four four key areas that I want to cover um as it relates to this slide.

First and foremost, we have the fault tolerance. So whatever systems you're building, make sure that you have the ability to have hardware redundancy fail over capabilities, replication, et cetera.

Um the second part here is immutability. I, I feel like we can't say that enough. It's so critical and it's actually a really simple thing to do. So um make sure that you uh lock that data, we call it data lock. Um and, and make sure that that data can't be tampered with.

Um the third thing is encryption um making sure that you have all of your data encrypted. Um at rest at flight, you can even leverage k ms to um encrypt those backups. That's another option.

And um the last thing here really is just making sure you have appropriate security security hardening across your platform.

Yeah, I mean, i i i've hit on a lot of these. Um so we, this is a lot of the areas that we looked at. So we really focused on that kind of that fault tolerance. How do we make sure that we have that fast fail over from our data centers? How do we make sure that our v ms can come back? Our, our databases can come back for our on prem systems.

I talked a lot about from a science perspective that when we capture data from the scientific pieces of instrument, how important it is for us to have that, that data lock, that pedigree on that data. And then obviously, I think the encryption is encryption and security is is just kind of table stakes. It has to be.

Yeah. Yeah. So um we all know data is growing and it's gonna keep growing faster and faster. And then especially as we start to add some of these new machine learning components on top of our data that's going to be generating even more and more data.

Everyone knows that you know, data is so important to how your company runs and how your company is going to run in the future. And so understanding where your data is, how your data is generated and how you can secure your data both currently as well as in the long term is really, really important.

Um it's, it's even if you, if you don't think about the basic, you know, disaster recovery scenarios, it's just all of those components and understanding of putting data governance around that all of those things are, are really critical that companies start doing.

And I think that there's so many companies that maybe conceptually know some of that stuff, but don't have some of that put into practice. And I would really encourage you that as you're thinking about data, don't think about ok, we're just backing it up and you know, maybe i'm just part of it and i checked the box, i needed to back up, really need to understand a lot more about kind of some of the context with that data.

And so when you're starting to put your systems together, when you're looking at your existing environment, when you think about where you have data in the cloud, as well as on the edge, it's important to make sure that you continue to focus on understanding where that data is interacting with each other. And what are you doing to make sure that those interactions are clear and recoverable for us.

We have multiple different types of data, as i've mentioned. And with cohesive, we're actually able to have multiple different policies on how we think about that data. And so what we're doing is is for you, for our v ms, for our servers, we're doing a daily every day um once every seven days, then i think we also do like a 60 then a yearly or something like that. So we have multiple policies there on our databases, we have different policies on those scientific pieces of equipment, we have different policies and with cohesive, what it does is it does allow us to have different, those different policies depending on the criticality of what that is or how much data it's generating or how often it's, it's able to generate that data.

So that really provides us a lot of of different um yeah, opportunities. And so we're doing, in some cases, we're doing that replication between the two data centers on prem some cases, as i mentioned, we do that, that replication of data straight up into the cloud up into aws. And um we aren't there yet, but we are, are looking at for uh for one of our companies where we're gonna be taking those some of that on prem replication. And then we're gonna also do that third car copy up to the cloud.

Nice. Yeah. And so that's the kind of the cloud archive element of things right? To um you know, make sure you've got again, multiple copies, put it in a different location. All right.

So um i wanna make sure that we have time for some questions from, from all of you. So um i originally, i had a, a demo in here when we get to that, i'm just gonna skip over it. If you wanna see our product in action, we're in the security area at booth 1572. So feel free to stop in there.

Um but for now let's just go ahead and, and grab the slides here and then we'll wrap things up and, and take a few questions.

Um so first and foremost, um in terms of our solution, you have the flexibility um to deploy our solution. However, you like, you could deploy that through appliances on prem, you could install our software on h pe cisco dell, your platform of choice, you could install our software into the cloud or you could run us as a service. So that's kind of that middle area.

I think the other thing to all out in the middle part of my screen there is you've got the data protection. We have multiple pillars, data protection, data security, data mobility, um as well as data access and uh data insights. We have some forward looking stuff coming out on a i, i'll actually be doing a presentation on that at our booth on thursday at 130 if you want to learn a little bit more on that as well.

Um so with all of that at its core, i think the other thing that is important to note is that you can protect your data at the edge in your data centers and in the cloud can we actually can we go back now that you've jumped? I i just wanted to call out on, on this slide right now. This single pane of glass is a big deal for us.

Uh so the, the fact that we have, we have multiple different domains, multiple different coun countries we are on prem we're in the cloud, all these different things. Cool thing is with coity, we're gonna be able to look at just one pane of glass and understand what our data backups are looking like.

So even though we are going across those multiple instances, um with the r architecture of coity, we have the ability to, as we deploy and as we mature, we're going to be able to see all of those companies in one place. And so that for us that, that became, that's really cool.

Um it kind of, it kind of evolved a little bit as we were using the product. So we've been using cohesive for about three years. So that feature has evolved a little bit as we use the product, but it has become really, really important.

Ok. Yeah. Thank you for calling that out. I do, I do like the single pane of glass. I think i personally take it for granted that it's there, but it is, it's a nice benefit.

All right. Um so this really is just a summary um of, of how to look at it. We already talked about the pillars in the middle, right? All starts with data protection.

Um so I'm not gonna talk too much about that. But if you look at the bottom of the cloud, right? I think this is the mindset. So you have the mindset of um make sure that you can scale do that simply um zero trust security.

We are we architect based on zero trust, we're leveraging a i uh ml to power some of the product already today. Um but as i mentioned, we're actually gonna be doing more um around uh leveraging uh natural language models.

Um and then in terms of a third party extensibility, we have a really uh strong security ecosystem. So if you are working with um other solutions such as um like palo alto or cisco, like the xor, we integrate with a lot of those, those soc solutions.

Um and um we have a great team, high net promoter score as well. All right. All right. So as we come to the end, um again, understand your data.

So as you think about your strategy about where this is, it's really important to be going back to that the slide with all the, all the circles on it. Understand where you have data, where is it being generated? I think it's important to really understand.

I think for me, i've had several instances where we have data that's being generated or is being given to a third party that we weren't aware of. And so it's really important to understand where is your data coming from? Where is it being stored? How is it being stored? And ultimately, if you have to bring your environment back together.

Um so maybe there's a natural disaster, right? If you have to bring your environment back together, are you going to have all of the data and we'll be able to, to work together and compliance from even, even though maybe not all of you are as global again, there's so many state regulations that are coming.

If, if you don't have to comply with state regulations yet, you're likely going to have to comply with some state regulations and no matter what, there's going to be something that you have to understand around your data and how the the new policies that are coming out um are are there and some of those are going to be industry specific, some of these are gonna be uh geography specific.

So understanding that how do you comply with these things and and being able to kind of go after best practices initially, uh really helps. As you think about your strategy, security strategy is is integral to thinking about data. And we think about why are we doing this? Why do we care about the data so much? It really comes back to security and making sure that you can get back to where you want your data to be from an original standpoint, making sure that threat actors aren't able to access your data or expose that data.

Um being able to if you have an encryption event or ransomware event, knowing that you can be comfortable saying i don't have to go try to pay that ransom and hope that my data gets unencrypted.

Um so really making sure that this is integrated into your security strategy is critical and um for us, maybe a little bit aspirational um as i said, um but test everything. Uh i would, i would love in, in my role for every one of our companies to be able to do a full dr test and you know, run in a secondary environment on a, you know, regular basis.

We're not there yet. Um but with cohesive, my confidence in the fact that i actually have data that would allow me to do that and i have an environment that i can do that as well is is pretty reassuring.

Awesome. Well, thank you for that, that great summary. Thank you for sharing everything that you did today as well, so openly and transparently. So thank you so much for being here and ryan, thank you again for sharing everything.

Yeah, thanks everyone. Appreciate it.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值