寒假小题(3)——不可摸数
题目如下:s(n)是正整数n的真因子之和,即小于n且整除n的因子和.例如s(12)=1+2+3+4+6=16.如果任
何
数m,s(m)都不等于n,则称n为不可摸数.
Input
包含多组数据,首先输入T,表示有T组数据.每组数据1行给出n(2<=n<=1000)是整数。
Output
如果n是不可摸数,输出yes,否则输出no
Sample Input
3
2
5
8
Sample Output
yes
yes
no
解题思路:求出每个数的真因子之和与输入数据比较,若相同则输入数据不为不可摸数,输出no。
难点:即使题目给出的输入数据大小为2到1000,但是我们无法判断比较范围,只能确定最大的范围,1000000以上的数真因子之和必定大于1000,但是此范围过大,不断地用循环判断数据是否符合要求,程序容易超时。
解决办法:我们要避免不断从头开始计算因子和,可以首先一次性求出从1到1000000的所有真因子和存入数组之中。数组中所有小于1000的元素即为2到1000的所有非不可摸数。
代码如下:
#include<iostream>
using namespace std;
int sum[1000001],flag[1001]={0};
int main()
{
int n,m,i,j;
cin>>n;
for(i=1;i<=500000;i++)
for(j=2*i;j<=1000000;j+=i)
sum[j]+=i; //筛选法求因子和
for(i=1;i<=1000000;i++)
if(sum[i]<1000)
flag[sum[i]]=1;
while(n--)
{
cin>>m;
if(flag[m])
cout<<"no"<<endl;
else
cout<<"yes"<<endl;
}
return 0;
}