17:计算三角形面积

一、题目链接

http://noi.openjudge.cn/ch0103/17/

二、解题思路

◎ 高斯鞋带公式(x1*y2+x2*y3+x3*y1-x1*y3-x2*y1-x3*y2)/2用于计算三角形面积,计算结果可能为负;
◎ C++的cmath库提供abs函数计算一个数的绝对值,称为绝对值操作,例如:
   → abs(-1)得到1;
   → abs(1.5)得到1.5;
  注意:abs函数括号中的数据是什么类型,得到的绝对值结果就是什么类型;
◎ 输入三个顶点的横坐标和纵坐标,通过高斯鞋带公式计算三角形面积。

三、实施步骤

◎ 首先,定义并输入六个float类型的浮点数x1、y1、x2、y2、x3、y3,分别代表三个顶点的横坐标、纵坐标;
◎ 其次,定义float类型的浮点数ans,代表三个顶点构成三角形的面积,令ans=abs(x1*y2+x2*y3+x3*y1-x1*y3-x2*y1-x3*y2)/2;
◎ 最后,通过格式控制输出语句printf配合"%.2f"格式控制标记,输出ans。

四、C++程序

#include <iostream>
#include <cmath> // 使用cmath库中的abs函数进行绝对值操作
using namespace std;

int main()
{
    float x1; // 第一个顶点的横坐标
    float y1; // 第一个顶点的纵坐标
    float x2; // 第二个顶点的横坐标
    float y2; // 第二个顶点的纵坐标
    float x3; // 第三个顶点的横坐标
    float y3; // 第三个顶点的纵坐标
    cin >> x1;
    cin >> y1;
    cin >> x2;
    cin >> y2;
    cin >> x3;
    cin >> y3;    
    float ans = abs(x1 * y2 + x2 * y3 + x3 * y1 - x1 * y3 - x2 * y1 - x3 * y2) / 2; // 利用高斯鞋带公式计算三角形面积
    printf("%.2f", ans); // 保留2位小数输出三角形面积
    return 0;
}
### 计算三角形面积的编程方法 #### 使用海伦公式计算三角形面积 为了确保给定的三边能够组成一个有效的三角形,程序会先验证这三条边是否满足任意两边之和大于第三边的原则。如果条件成立,则采用海伦公式来计算面积: \[ \text{半周长} = s=\frac{(a+b+c)}{2}\] \[\text{面积}=A= \sqrt{s(s-a)(s-b)(s-c)}\] 其中 \(a\)、\(b\) 和 \(c\) 是三角形的三个边长。 下面是一个基于上述逻辑实现的例子,使用 C++ 编写的代码片段用于求解三角形面积[^1]: ```cpp #include<iostream> #include<cmath> // 导入数学库以便使用 sqrt 函数 using namespace std; int main(){ float a,b,c,s,area; cout << "请输入三角形三边边长,将输出三角形面积\n"; cin >> a >> b >> c; if (a + b > c && a + c > b && b + c > a){ s = (a + b + c) / 2.0; // 计算半周长 area = sqrt(s * (s - a) * (s - b) * (s - c)); // 应用海伦公式计算面积 cout << "三角形面积为:" << area << endl; } else{ cout << "三边长需满足两边之和大于第3边" << endl; } return 0; } ``` 这段代码首先导入必要的头文件并定义变量 `a`、`b`、`c` 来接收用户输入的三角形三边长度;接着通过一系列比较运算符检查这些数值能否形成有效三角形;最后利用海伦公式完成面积计算,并打印结果。 对于 Python 实现同样功能的脚本如下所示[^2]: ```python import math def calculate_triangle_area(a, b, c): """Calculate the area of triangle given its three sides.""" if a + b <= c or abs(b - c) >= a or abs(c - a) >= b: raise ValueError(&#39;Invalid side lengths&#39;) semi_perimeter = sum([a, b, c]) / 2 area = math.sqrt(semi_perimeter * (semi_perimeter - a) * (semi_perimeter - b) * (semi_perimeter - c)) return round(area, 2) print("Enter values for each edge:") try: edges = list(map(float, input().split())) result = calculate_triangle_area(*edges) print(f"The area is approximately {result}") except Exception as e: print(e) ``` 此版本增加了异常处理机制以应对非法输入情况下的错误提示信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江苏科技大学_计算机学院_潘磊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值