pytorch系列(五):批训练的数据划分

import torch
import torch.utils.data as Data#导入pytorch的数据处理模块

#DataLoader是一种处理数据的工具,能够自动处理tensor形式的数据,训练过程中能更好的迭代数据

BATCH_SIZE=8#批训练的数据个数

#原始数据
x=torch.linspace(1,10,10)
y=torch.linspace(10,1,10)

#先将数据集转换成torch能识别的格式  类似于组成torch专门的数据库
torch_dataset=Data.TensorDataset(x,y)

#把torch_dataset放入data_loader
loader=Data.DataLoader(
    dataset=torch_dataset,#数据集
    batch_size=BATCH_SIZE,#批大小
    shuffle=True,#是否洗牌数据
    num_workers=2#多个线程或进程同时划分数据
)


#数据划分过程
for epoch in range(3):
    for step,(batch_x,batch_y) in enumerate(loader):
        #训练过程
        #。。。。。。。
        
        #打印划分情况
        print('Epoch: ', epoch, '| Step: ', step, '| batch x: ',
              batch_x.numpy(), '| batch y: ', batch_y.numpy())


数据划分情况:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值